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AUTHOR'S ABSTRACT

Sbornik zadach po dinamike tochki v pole tsentral'nykh sil,
[Collection of Problems on the Dynamics of a Point in a Central
Force Field], Ye. N. Polyakhova, Leningrad, Leningrad University
Press, 1974, pp. 1-145.

The collection is a detailed selection of problems on the
dynamics of the motion of a material point acted on by a central
gravitational force of attraction, in particular, "the dynamics
of space flight. As an exception, the book presents several prob-
lems on the motion of a point acted on by central nongravitational
forces.

The collection is intended mainly for correspondence students,
however it can also be used as a text in the course on theoretical
mechanics for students in day and evening departments. It may
also prove useful to instructors providing practical exercises in
the course on theoretical mechanics. 37 illustrations, 6 tables,
9 references.
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FOREWORD

This collection is a textbook for the course of theoretical
mechanics ("Point Dynamics" section). It is intended mainly for
students in correspondence departments of Leningrad State Univer-
sity and other higher educational institutions. It may also be
used in part by students in the day and evening departments.
Moreover, the problem book may prove useful for beginning instruc-
tors in providing practical exercises in the course on theoretical
mechanics, particularly, when they prepare modifications of
test problems.

Most of the collection is a detailed sampling of problems on
the dynamics of a material point acted on by gravitational force,
in particular, problems on the elementary dynamics of space flight.
Several problems on the motion of a point acted on by central non-
gravitational forces are presented. Altogether, the collection
includes about 200 problems of varying degrees of difficulties,
with solutions.

The basis for Sbornik zadach was material from lectures and
practical exercises in the course on theoretical mechanics given
by the author for a number of years in the mathematics and mechanics
division of Leningrad State University. The conditions of the
problems were set up by the author or else were taken from various
domestic and foreign texts, indicated in the bibliography. Solutions
to all problems, as well as related computations, have been provided
anew by the author or have been carefully verified.

It should be noted that the collection presents solutions of
most of the problems proposed in the new chapter "Dynamics of
Space Flight" from Sbornik zadach po teoreticheskoy mekhanike
[Collection of Problems on Theoretical Mechanics] by I. V. Meshcher-
skiy.

The proposed problems, as related to their subject matter,
are grouped into 11 sections. At the beginning of each section
(not including the last) a brief theoretical background and
essential formulas on the dynamics of a point are presented. The
section "Miscellaneous Problems" groups problems in whose solution
information from various parts of the collection is required.

A distinguishing feature of this Sbornik zadach is the expo-
sition of a number of theoretical questions pn the dynamics of a
point in a central force field in the form of problems, so that
quite often references to the numbers of formulas are derived
directly in the solution are encountered in the text. The author
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hopes that the presentation of several elements of theory in the
form of problems will promote an easier grasp of the material
when presented in the correspondence teaching form.

The author is obliged to thank the head of the celestial
mechanics faculty of the mathematics and mechanics department of
Leningrad State University, Professor K. V. Kholshevnikov and the
docent of the theoretical mechanics department of this same faculty,
S. A. Zegzhda, for attentively reading the manuscript, for valuable
counsel and comments that did much to promote improvement in the
book. The author will also be appreciative of all who wish to
report errors found or to express their critical comments and
suggestions.
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CHAPTER ONE /5*

CENTRAL FORCES. FORCE OF GRAVITY AND ITS
DYNAMIC CHARACTERISTICS

In mechanics a force F whose line of action extends through
a point called the force center (center of attraction) is called
a central force. The central force can be expressed by the
formula

F/-F. F, (1.1)

where r is the unit vector of the radial direction connecting
the force center with the point of its application. In attrac-
tion the magnitude of force F is negative, and in repulsion --
-- positive.

Central forces are subdivided into forces of attraction
(directed toward the center) and forces of repulsion (acting from
the center). Among the central forces most widespread in nature
we should note first of all mutual attraction, that is, the gravi-
tational force of attraction. Its law of variation, formulated by.
Newton, is known as the law of universal gravity.

The law of universal gravity states that the masses m and M
mutually attract each other with a force directly proportional to
the product of these masses and inversely proportional to the
square of the distance r between them:

IFI= f'M 
(

r2 (1 .2)

The coefficient of proportionality f = 6.67310- 8 cm3 /g'sec 2 is
called the universal gravitational constant.

* Numbers in the margin indicate pagination in the foreign text.
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From Newton's second law it follows that masses and accelera-
tions in a gravity field (are associated by the relation

._ = w . (1.3)
M WM

According to Eq. (1.3) two problems in the dynamics of a point
in a central graviity force field )are distinguished:

1) the motion of a point with small mass m in the gravity
field lof a point with large mass M (m << M), where the ratio
of masses is such that acceleration wM can be neglected and there-

fore we can assume mass M to be fixed (the limited problem of two
bodies, or the problem of the motion of a "nonattracting" point
in the gravity field of Ja "attracting" point); and

2) the motion of a point with mass m in the gravity field
,of a (point with mass M (m < M), when acceleration wM cannot

be neglected (the problem of two bodies, or the problem of the
motion of one "attracting" point fin the gravity field of
another). /6

Problems of the first type include all problems on the motion
of artificial satellites and spacecraft in central gravity fields
of planets for the Sun, that is, on the dynamics of space flight.
Their solution then makes up the bulk of the collection. Problems
of the second type are examined only as exceptions.

If not specifically stipulated, we will not differentiate
from the dynamic point of view the concept of the gravitationally
attracted material point and the gravitationally attracting body:
in the class of these problems we will assume bodies whose dimen-
sions cannot be neglected to be homogeneous bodies, and the attrac-
tion of a homogeneous sphere, as we know, is equal to the attraction
of a material point coincident with the center of the sphere at
which the entire mass of this sphere is concentrated.

Problem 1.1. Set up an equation of the limited two-body
problem, that is, equations of motion of a point with mass m in
a field of central attractive force with fixed point mass M (m << M).

Solution. Let us place at the point of mass M the origin of
an absolute inertial coordinate system x, y, z. The position of
the point with mass m relative to this origin we will characterize-o
as the radius-vector r = rr The central attractive force acts
on mass m. According to Eqs. (1.1) and (1.2) this force is of the
form:

2



F-Fi o , F- (1.4)

and the equations of motion of a point acted on by this force are

dt2  r2  d. r

By dividing both .parts of the equality by m and denoting fM = 1,
we get finally

d2T-- L =0. (1.5)

Eq. (1.5) is called the vector /equation of motion for a limited
two-body problem. From this equation it follows that the motion
(acceleration of a point depends only on the gravitationally 1
attracted point mass M concentrated at the origin of coordinates.
The coefficient p = fM, called the gravitational parameter of the /7
central body, characterizes the intensity of the gravitational
field induced by mass M.

The vector !equation (.1.5) is equivalent to three equations
expressed in coordinate form:

dtt  V_ + r =0, + .-_

Problem 1.2. Derive the formula of action of a central
attractive force of fixed mass M as a point with mass m moves in
the field of this force.

Solution. To derive the formula of the elementary work done
by the attractive force, let us use the expression for force (1.4):

1 This mass is also called the central mass, or the mass of the
central body (if the body is a homogeneous sphere), since the line
of action of the force continuously passes through this point mass,
also called the force center. The term "central mass" by no means
signifies that this mass is at the center of the trajectory of
motion, although in a particular case this is possible.



'A~mr=- --- (i°d2)=- f dgF)=- _1__PMr. (1.6)

By integrating (1.6), we get expressions for the work done by the
attractive force as a point mass m at the surface of the imaginary
sphere with radius rl is moved to a new position on the surface of

a sphere with radius r2:

A= '-O dr = ff TaM -

A r rS 1_ r. (16}

If a point with mass m approaches mass M(r 2 < rl) , the work

done by the attractive force is positive. If point m separates
from this mass (r2 > rl1 ), the work is negative.

Problem 1.3. Show that the attractive force is a potential
force and determine the form of the potential function.

Solution. The function of coordinates U whose differential
is equal to the elementary work done is called a potential function,
or a force function, while the force and force field for which this
function exists are potential force and force fields.

Based on Eq. (1.6) we conclude that dU = 6A = Fdr - fmM dr.• 2
r

Thus, the potential function exists and is of the form

U S(- fMr)dr fR + C.

We can determine the constant-C from the relation

C=lim U= -U, (1.7)

that is, C is the value of the potential function at infinity,
and it can be set equal to zero: C = U = 0. By thus fixing /8

the arbitrary constant, we get the expression:

U=(. U= ft
r r(1.7')



which we will call the potential of the attractive force (the
potential function with fixed arbitrary constant is usually called
the potential).

The set of services of the potential level for different r
values is a set of concentric spheres whose common center coincides

with the center of attraction where mass M is concentrated.
Equalities (1.7) and (1.7') enable us to write

fM=-U =Ar, (1.7")

so that the gravitational potential at a given surface of a level,
that is, at the surface of a sphere with given radius is equal to
the magnitude of the work done by the attractive force (potential
difference) as point mass m is moved from infinity to this surface

of the level. The attractive force can be expressed here in terms

of the potential:

F= U/ar - fmnM/r.

Problem 1.4. Show that the gravitational potential of a

homogeneous sphere with mass M is equal to the potential of a

point mass m equal to the mass of the sphere concentrated at its

center.

Solution. Knowing the expression for the gravitation poten-

tial of point mass (1.7'), we can compute the potential for point
mass m attracted by a homogeneous sphere with mass M and radius R.

Let us subdivide the elementary volume of the sphere dT and calculate

it in a system of spherical coordinates p, 0, and 4 (Fig. 1) bound

with a fixed direction to point mass m at distance r from the center

of the sphere. We can easily see that the elementary volume dT =

= dp'pde'p sinedP, therefore the potential dU of this volume for

point m at distance h from element dT will be du ft = mVd/ ,

where =I, -Ia2-2arcose; v is the density of the sphere. By

integrating in p from 0 to R, in e from 0 to f, and in p from 0 to

27, for the entire sphere we get

R 2
U= 'fm dp sin 0 d d /9

Wr + p' - 2 rp cose

=2it fm dpsing
00
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We set L1 u()= r+p t -2rp cos, i so that du=2rpsina d8.

Therefore

p sin 9d8 - J [r + Up- 2zpcsO) 1
S+p=-2 rp cos r

So

U= 4dp
0 

1

But the mass of the homogeneous

m sphere M= -'IR 9° so the

gravitational potential of a homo-
rI 4 geneous sphere with mass M for

point m at distance r from the
center is

SU = - rM , (1.8)

that is, it is equal to the poten-
tial of point mass M concentrated
at the center of the sphere. Here

Fig. 1 the force of gravitational attrac-
tion of the sphere is also equal
to the central force of attraction

of the point mass:

F=F=grad U J

We note that the result is valid not only for a homogeneous sphere, /10
but also for a sphere with spherical distribution of densities,
that is, when the densities are equal at points equidistant from
the center. In this case M;9 ' ( d .

Based on the foregoing we can conclude that two spheres
(homogeneous or with spherical distribution of densities) are
attracted as corresponding material points. This important property
of the potential of the sphere enables us within the framework of
the problems considered in this collection to assume the gravitation
of planets and the Sun to be gravitation of point masses, considering
that the distribution of the densities of these bodies can be assumed
spherical, with adequate accuracy.



Problem 1.5. An artificial Earth satellite with mass m is
moving uniformly in a circular radius at given altitude H acted
on by the Earth's gravitational force. Write the law of action
of the force as a function of angular and linear velocities of
motion. Determine how many revolutions per day are made by the
"zero", that is, fictive, satellite around the Earth, moving along
the surface of its spherical Earth in the circular orbit.

Solution. In uniform motion along the circle, the accelera-
tion w of a point consists only of the radial component w = w =

2 r= -W (R+ + H). Here R is the radius of the Earth, and w is the
0 t

angular velocity of the AES. Then in accordance with the equations
o fmotion we can write

F=F. =-m w 2 (R6 +H), (1.9)

or

F=F = / (1.9')

where the angular velocity w and the linear velocity v are associated
by the relation v=(Ra+H)w. Eqs. (1.9) and (1.9') characterize

the desired law of action of the force.

We know that the "zero" satellite (r = R ) will move with
linear velocity v = 7.9 km/sec (first escape velocity). Let us
find its angular velocity:

9= .3L= 7.9km/sec. 86400 7.9 8.64 -.04R6 6370km 6.28 6.37*0*6,28 = 17.1 revolutions.

Thus, actual Earth satellites cannot make more than 17.1 revolutions
per day.

Problem 1.6. An artificial.Earth satellite with mass m moves
uniformly in a circular orbit at given altitude H acted on by the /11
Earth's gravitational force. Knowing that the mutual attraction
of Earth and AES [artificial Earth satellite] obeys Newton's law,
express the force of attraction in terms of the acceleration due
to gravity at the Earth's surface and at altitude H.

Solution. For this problem Newton's law is of the form
IFI = fmM /(R + H) 2  We know that at the Earth's surface ,(H = 0)

7



the attractive force is numerically equal to the weight of the

body: IFI = D = mg (we will assume the Earth to be fixed, and
thus we will neglect the inertial forces). Hence f_~I = ny
or K

FM , = eyR. (1.10)

The attractive force F can be expressed here in terms of the

acceleration due to gravity g:

2I7yR , O (1.11)
IFr-(R, +H)2 . P r 2-

Note also that from Eq. (1.10) there derives a formula for computing
the acceleration due to gravity at the Earth's surface:

f (1.11')

F_ fM MA MgR,'
For arbitrary altitude H, (Ra+H) (R6 H)a where gH

is the acceleration due to gravity at altitude H. Finally, we get

(FM /R = (R6 +//) 2 , q1 (1.11")

Problem 1.7. To which altitude must a circular-orbit Earth

satellite moving in the plane of. the equator be inserted into

orbit in order to be continuously over the same point on the

Earth's surface (R = 6370 km).

Solution. To fulfill this condition for stationary status

of the "satellite track" point it is necessary that the angular
velocity of the AES in orbit be equal to the angular velocity of
the Earth's rotation .w , which can be readily calculated by the

formula w,= . 7*10 - 5 sec- 1 (P is the period of the

Earth's rotation about its axis). This AES is called a diurnal

(24-hour) stationary [geostationary] satellite.

To solve the problem, let us use Eq. (1.9), which for our

case must be rewritten as IFj=nI7m (R,+H),' and Eq. (1.11),

enabling us to express the force in terms of the acceleration

8



due to gravity. By equating the force expressions, we find the

formula for the altitude H = -R. By substituting in it

g = 9.81 m/sec2 , R = 6370 km, we get H % 35,800 km. /12

Problem 1.8. Determine the velocity required for rectilinear
vertical climb of a missile with mass m from the Earth's surface
to altitude H in the Earth's gravitational field.

Solution. In the ascent of a missile from the Earth's sur-
face to an assigned altitude H there is a change in the kinetic
energy of the missile equal to the work done by the Earth's
gravitational force (see problem 1.2). In this case we have

At altitude H the final velocity is equal to zero (the missile

comes to a halt), and the initial velocity VO l2 i

or after replacing fM by gR according to Eq. (1.10), we have

S R H (1.12).

Let us examine the two limiting cases:

1) for H << R (low altitudes) v,-2 y H+/1- H (Gali-

leo's formula), and

2) for H + (separation from the Earth's gravitational

field), }+42Qo = ]i;/T = -R 11.19 km/sec (second escape

velocity).

Problem 1.9. Determine the velocity of fall of a point with
mass m to the Earth's surface if this point is dropped at altitude
H without initial velocity.

Solution. The problem is the inverse problem 1.8. In this

case there is a change in the kinetic energy of the missile: 2

- = mMa (, =F fmM H Then v0 = 0, but the velocity

9



of landing is

2 fMaH ,/ gs ,'
/R,(R+H) V R+H (1.12')

We can see that the velocity of landing found from Eq. (1.12') is
the same as that calculated by the formula of the launch velocity
for a climb to altitude H (1.12). For H << R , we again have

v % /2gH, and for H + w (arrival from "infinity") v ,% Vt7gR = 11.19

km/sec. Hence, in particular, it follows that meteorites falling
on the Earth "from infinity" in a parabolic trajectory can have
this velocity.

Problem 1.10. Determine the velocity v0 that must be imparted

along a vertical directed upwards to a body at the surface of the /13
Earth in order for the body to ascend to an altitude equal to the
Earth's radius (H = R = 6370 km). Here we will assume only the

Earth's gravitational force. The acceleration due to gravity at

the Earth's surface g = 981 cm/sec 2 = 9.81'10 - 3 km/sec 2

Solution. Substituting into Eq. (1.12) the value H = R , let

us find v,= 2gR/2R = - = 9.81-l10 - - 3 7 0 3 7.9 km/sec.

10



CHAPTER TWO. /13

KEPLER'S LAWS

Kepler's laws on planetary motion are usually formulated as
follows:

1. Each planet moves in an ellipse, at one focus of which
is the Sun.

2. The area of the sector described by the planet's radius-
vector changes in proportion to time.

3. Squares of the periods of revolution of the planets
relate as cubes of the semi-major axes of their orbits.

Problem 2.1. Show that the coordinates of, a planet moving
around the Sun according to Kepler's laws can be'expressed as a
function of time.

Solution. Let us turn to Kepler's first law and consider an
ellipse (Fig. 2) described by point M (planet) whose center C we
will take as the origin of coordinates. We will use as the Cx axis
the direction of the semi-major axis Cff = a extending through
focus S at which the Sun is, and.as the Cy axis -- the direction
of the semi-minor axis CB = b. Let us replace the equation of an
ellipse in this coordinate system

+ 4 (2.1)

by parametric equations, selecting the parameter as follows. From
point M (x, y) representing the position of a planet, let us drop /14
a perpendicular MN to the X-axis. Extending this perpendicular
upwards until it intersects a circle whose diameter is the major
axis aff, we get point M'. Specifying each of the points M and M'
uniquely defines another point. But the position of point M' can
be characterized by angle E for the center of an ellipse measured
from the semi-major axis Cw along the line CM' in the direction

11



of planetary motion. This angle

Mr is called the eccentric anomaly
N of the planet. Eq. (2.1) is

/ B equivalent to the parametric
equations of an ellipse x = a cos E,
and y = b sin E, the first of which

E nis obvious from geometrical consid-
N - erations (x = CN), and we obtain

c Nthe second after substituting the

Ifirst into the canonical equation
(2.1). The ratio e = CS:Cr < 1
defining the shape of;the ellipse

I , is its eccentricity. Obviously,
C S = ae, CB = b = a /- -.

Fig. 2 Not let us introduce a system
of rectangular orbital coordinates
S n, whose axes are parallel to

the system axes Cxy, and whose origin is at focus S. Then

~ =C-CS=acosE- ae NM= -- -i ,,E. " (2.2)

Let us denote by r and the polar orbital coordinates corresponding
to 5 and n. The angle measured from the radius vector STr oriented
at the perihelion n is called the true anomaly of the planet. Since

,=rcos(, iJ rsin ' i (2.3)

then, by comparing equalities (2.2) and (2.3) we get the formulas

rsiny=a Vi-e' sinE, rcos = a(cos E-e), t (2.4)

which serve in calculating the polar orbital coordinates r and 4
for a given E.

From Eqs. (2.4) we can easily determine that

r =a (f-eosE). (2.5)

Subtracting from (2.5) the second of the equalities (2.4). .ard then
adding them, we find r(1-cosy) = c (+e) (i- cos E) , r ( + cos ) =

a (I-e)(i + cosE) , or

Vsin c12 e) sin E- cos-J- I.-e oc (2. 6)

12



where in extracting the root the sign is determined uniquely,
since the angles 0/2 and E/2 are always in the same quadrant
(E = 1800 corresponds to € = 1800). From (2.6) there also follows /15

t 1--e =} (2.7)

Thus, to calculate r and 4 for a given E we can use, instead of
(2.4), Eqs. (2.6) or Eqs. (2.5) and (2.7).

Note that by canceling out E from Eqs. (2.4) and (2.5), we
get the equation of an ellipse in the polar coordinates:

S1+ eos ' (2.8)

where p-a(f-e)=V T - - is the focal parameter of 'an ellipse,

that is, the ordinate of a point for which 0 = 900. Eq. (2.8)
is also the general equation of conic sections (when e = 1 it is
a parabola, and when e > 1 it is a branch of a hyperbola concave
with respect to focus S).

It remains to show that angle E can be expressed as a func-
tion of time. To do this we turn to Kepler's second law.

If we let t and t refer to the moments of time at which the

planet is at the perihelion and at arbitrary point M, and if we
let T represent the planetary period of revolution, based on the
second law we have

sT b - T (2.9).

where 7ab is the area of the ellipse, Q is the area of the focal
sector SiM equal to the difference between the areas of the curvi-
linear trapezium NMn, and a triangle NMS, that is,

Q is area NMn -- area ANMS. (2.10)

To calculate the area of the trapezium NMf let us use the
ratio of the areas of the two curvilinear (elliptical and circular)
trapezia:

area NMrr _ b(2.11)
area NM'r a

13



The area of trapezium NM' in turn is half the area of the circular
segment M'IM" and can be determined from the familiar formula of
the circular segment with aperture angle 2E: area NM'w = 1/2*
"a2/2 (2E-sin 2E) = 1/2 a2 (E-sin E cos E), whence by means of
Eq. (2.11) we get area NMr = 1/2 ab (E-sin E cos E).. The area
ANMS appearing in Eq. (2.10) can be determined by means of Eqs.

(2.3) and (2.4): area ANMS=- q (-~) r2 sinc os = - acb sin E(cosE-e).'

The "minus" sign in front of M corresponds to the "minus" sign /16

in Eq. (2.10), from which we finally have Q = 1/2 ab (E - e sin E),
owing to which Eq. (2.9) can be written as

E - e sin E = M, (2.12)

27rwhere M = n (t - t ), n - T

The quantity n, the mean rate of change of angle E, that is,
the mean angular velocity of the planet, is called the mean motion
of the planet, M is the mean anomaly, and Eq. (2.12) is Kepler's
equation (see also Section [Chapter] Six).

Kepler's equation enables us to completely solve the .problem
of determining the angle E as a function of time. Thus, based
on the results obtained above it can be stated that the coordi-
nates of a planet moving around the Sun according to Kepler's
laws can be expressed as a function of time.

Problem 2.2. Using the formula r = a(l = e cos E), derive
the formulas of the aphelion r and perihelion r distances of a

planet from the Sun and the orbital eccentricity (Fig. 2).

Solution. For the perihelion f and the aphelion a, angle E
is 0 and 1800, respectively, so that

r,=a(l-e), r, (le), r=a=(r,+r). 
(2.13)

Hence the eccentricity is

re + (2.13')

and the ratio of distances is

3 L -e (2.13")

14



We can easily see that the mean (arithmetic mean) distance of a

planet from the Sun is equal to the semi-major axis;

r (r + r ) =a.
av 2 a

Problem 2.3. The semi-major axis of the Earth's orbit as it
moves around the Sun is 149.6-106 km, and the orbital eccentricity
of the Earth e = 0.01678. Calculate the largest ra and the

smallest r distances from Earth to Sun.

Solution. From Eqs. (2.13) we have r = 149 .6'106 (1-0.01678)z

147.1i106 .km, r = 149.6l106 (1+0.01678) = 152.1'10 km.

Problem 2.4. A satellite moves around a planet with radius
R in an elliptical orbit, whose eccentricity is e. Find the semi-
major axis of the orbit if the ratio of the pericenter altitude

to the apocenter altitude H /H = y < 1.

Solution. For an elliptical orbit we can write 2a = r + /17

+ r = H + H + 2R = H (1 + H /H ) + 2R = r -R)(1 + y) + 2R,

but r = a(l + e), therefore 2a-2R = a(l + e)(l +'y)-R(1:+ y),

a[1 - y - e (1 + y)p] = R, whence we have a = R (1 - y)/l - y - e

(1 + y).

Problem 2.5. Determine the mean radius-vector in time [r]t

if a is the semi-major axis of the orbit and e is its eccentricity.
Consider the values [r] for averaging with respect to the other
variables of elliptical motion.

Solution. By a time-averaged radius-vector of a point moving

in an elliptical orbit we mean the quantity [r]t~±rdt ,

where T is the period of revolution. Let us use the formulas of
elliptical motion obtained in problem 2.1,

r-a(l-ecosE) , E-ecosE = rM(t-T) =M,

and let us replace the variable of integration, changing from t to E
in the formulas

dE-ecosEdE - dt6 =dM, dt= LeosEdE.:

Let us rewrite the formula of the time averaging in terms of a

new variable, by changing the limits of integration for one
revolution of the satellite:

15,



rl 0 a ( -ecosE) -E =  * -

0 0

-2e cos E + ecosE )dE =-. ._ (E-2esinE+

+ eE + E sin2 . ( +- eT

Considering that the period of revolution T = 2f/n, we finally
get

[r], a (+-e2).

We can easily show that the same exact result can be obtained by
applying the formula for averaging r with respect to mean anomaly
M. The latter is an analog of time in formulas of elliptical
motion. The period of its variation is 2n. In this case

trIME rdM,0

where /18

r= a(i-ecosE), dM= (i-ecosE)dE,

so that

2l

[r = 2( -e cosE) 2dE = c i+ e)

While averaging over the mean anomaly is equivalent to aver-
aging over time, averaging over the eccentric anomaly E gives a
different result:

[r]E= rdE ( I-ecsE)dE ' (E- esinE)I I
0 1 0

that is, we again obtain the arithmetic mean ray ' -r + r

(see problem 2.2): averaging over E leads to a "loss" of ellip-
ticity; ellipticity is manifested when eccentricity is present
in the formulas derived above for [r]t = [r]M.

16



Let us estimate rav and [r]t = [r]M for the Earth's orbit

(e = 0.01678). a = ray = 1.4960000'1013 cm is the exact value

of the astronomic unit (Earth-Sun distance). Estimate [r]t =

= [r = . (1 + e2 ) = 1.0001408 = 1.4962106'1013 cm. Within
M -2

the limits of accuracy needed to solve problems in this collection,
we can neglect the difference between these quantities and assume

that [r]t =ra = = 149.6'106 km.

Averaging over the polar angle p (true anomaly) reduces to
computing the integral a

[rJ/ = - - I rdq .

0

This integral can be easily obtained by means of the subtitution

and when this is differentiated we have

(I+ tq2 -)dp= oe s 2_L

Replacing tg - by its value from the substitution, we get

a
+t . I I+ e tz E I + e sin X

which enables us to express d in terms of dE:

d_, /:11__ e dE1-e 0 a i+ee cos f + e 4 Si

Using the formulas

cos - = ( + cosE), sinfE - co E-) ,

let us find

-e I -ecosE 1 l-ecosE r

17



so that we finally get /19

2 5

I= a §'e-e Sdu' =a---b.
0
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CHAPTER THREE /19

INTEGRAL OF AREAS

The theorem of the variation in the kinetic moment K (angular
momentum) of a point with mass m moving under the effect of a

central force F is of the form

dW- dFxmU) _=xF=O.1

Hence follows the law of conservation of kinetic moment when the

point is moving under the influence of central forces, usually
called the integral of areas:

xu =, 1 (3.1)

where the vector constant c is the constant of the areas.

To determine the geometrical meaning of c, let us introduce

the vector Aa, whose modulus is the area AOMM' (Fig. 3):

Dividing both parts of the equality by At and letting At tend to

zero, we get the differential formula

a " 'F x d x
db T (3.2)

where da is a vector whose modulus is equal to the elementary area

swept by radius vector r in time dt. A comparison of (3.2)with (3.1)

enables us to write

(3.2')
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The quantity da/dt is called the
db sectorial velocity of a point so

that the constant of areas is
equal to double the sectorial

0 ' - velocity of a point. The modulus
6? sof the sectorial velocity is
' ̂ equal to the velocity of variation

in the area a swept by radius vector
~r. Its dimension is length 2/time.

The vector of sectorial
Fig. 3 velocity is perpendicular to the

plane containing the vectors r
and v, that is, the areas of the

trajectory of a point. From the integral of areas it follows thatl
when a point moves under the influence of central forces the /20
sectorial velocity is constant in magnitude and direction just
like theconstant of areas. In the particular case, this assertion
is valid also for the force of attraction.

Problem 3.1. Show that computing the integral of areas (3.1)
is sufficient and necessary for the motion of a point to occur in
a single plane passing through the center of attraction.

Solution. Let us place at the attracting center 0 a rectan-
gular system of axes xyz of arbitrary orientation. Let the com-
ponents C in these axes be denoted by ex, Cy, and cz, that is,

C = c{cx, Cy, Cz}. Then the vector equality (3.1) can be written

as three scalar quantities: y - z = ex, zx - xz = cy, and

x - yi = c . Multiplying tles.e equalities by x, y, z, respectively,

and adding the results, we arrive at the equation

c,x + c,y + cz =- r-0. (3.3)

which is the equation of a plane extending through the origin of
coordinates, \that is, through the attracting center, and perpendi-
cular to C. For a central force of attraction these results mean )
that the motion of a planet occurs in an unchanged plane extending
through the center of the Sun. This factor is reflected in Kepler's
first law (see Chapter Two).

Problem 3.2. Using the vector formula of sectorial velocity
(3.2), find the law of variation of area a swept by a radius vector,
with time.

Solution. From vector equality (3.2) follows the scalar

equality -c , and integrating it gives us = ct + a0 .
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This law of linear increase in area a is written for an
arbitrary central force. For the particular case of an attrac-
tive force, this result corresponds to Kepler's second law (see
Chapter Two).

Problem 3.3. Find the sectorial velocity da/dt and constant
of areas c of the elliptical motion of a point acted on by a central
force. Determine the values of the same quantities for the motion
of the Earth around the Sun, assuming the Earth's orbit to be
circular.

Solution. When a point moves in an ellipse acted on by an
arbitrary force its radius-vector sweeps Out a total area of an
ellipse fab in one period of revolution T, so that /21

dq _ab c = 2xab (34)d-T T T(3)

In particular, this result is valid also for the case when a point
moves in an ellipse acted onby agravitational force of attraction,
when the attracting center is at .a. focus of the ellipse. Taking
the Earth's orbit as circular, we have a = b = 150"106 km, T = 365

so that da/dt = 1.94'1014 km 2 /days = 0.86'10 - 2 astronomical unit /
/day.

Problem 3.4. Using the integral of areas determine the
relation between the planetary velocities at the perihelion and
aphelion (Fig. 4).

Solution. The vector equality
r x v = c is satisfied for any

Mii', 1  point on the orbit, including for
the apsides (perihelion 7 and

VV aphelion c):

rxu=r.x =x i=,

where the modulus of the constant
Fig. 4 of areas c can be determined by

the formula

c =ru sin(T) >,,l (3.5)

where ( z,v ) is the angle between vectors r and v at an arbitrary
point M (Fig. 4). The quantity c is always positive, so that the
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angle ( F,5-" does not exceed_1800. At the apsides the vectors
r and v are orthogonal (sin (r ; v) = 1), therefore the following
relation is valid

'OX r.
v, r (3.6)

which means that the velocity of a point at the apsides is inversely
proportional to the distance between them and the ellipse focus S
(that is, from the Sun). At the perihelion the planetary velocity
will be in the greatest, and at the aphelion -- the smallest.

Remark. In generalizing these formulas to the case of any
conic section and considering the orthogonality r and v at the
pericenter of this section, we can write: for the ellipse c =

= rmin ma x = max min and for the parabola and hyperbola

c = rmin ma x '

For an arbitrary conic section the following formula is valid:

K C r U
S (r, ii) -=u .,z-s

Problem 3.5. If a space rocket at an altitude 230 km over /22
the Earth's surface is given a velocity 10.00 km/sec parallel to
the Earth's surface, its orbital apogee will be roughly 370,000
km from the Earth's center (near the orbit of the Moon). What
velocity will the rocket have at its apogee?

Solution. The computations can be made directly by Eq. (3.6).
Assuming the mean radius of the Earth R = 6370 km, let us find

U= r . 0.00 3 70+230 -6--00 0.18 km/sec.

Problem 3.6. Two meteorites describe the same ellipse, at
focus S of which the Sun is situated. The distance between them
is so small that the arc MIM 2 of the ellipse can be assumed to be

a segment of a straight line. We know that the distance M1 M2 is

a when its midsection is at the perihelion 7 (Fig. 5). Assuming
that the meteorites will move at equal sectorial velocities,
determine the distance MIM2 when its midsection will pass through

the aphelion. The distances rn and r are known.
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I I Solution. Let us denote the
symmetric positions of meteorites

Snear the aphelion by MI and MI.
1 2

The condition of smallness of dis-
Fig. 5 tance between the meteorites

enabling us to approximate the
arc of the ellipse with a chord

lets 'us use, instead of the formula. of the area of an ellip-
tical sector, the formula of the area of a .triangle. In the time
the meteorite MI transits the arc M1M, its radius-vector sweeps

out the area MISM. On the condition that the sectorial velocities

are equal to each other, this area is equal to the area M2SM2

swept out by the radius vector of meteorite M2 as the latter

transits the arc M2MI. From the equality of these areas there

follows the. equality of the areas of the triangles MISM 2 and

M1SM that is, ar (MM')t ' , from whence we have M,':M: .

Since r < r , close to the aphelion the meteorites prove

to be closer to each other than close to the perihelion (we have
in mind the symmetric positions). Here their distance from each
other near the aphelion proves to be at a minimum of all possible
distances.

Problem 3.7. Describe in polar coordinates the equations
of motion of a point acted on by a central field and obtain the /23
first integral of the equations of motion in the scalar form.
Show that the resulting integral is an integral of areas.

Solution._ The equations of motion of a point acted on by a
central force F = Fr in the polar coordinates r and p are two

equations in projections inthe radial and transversal directions:

m - r  r * -q r  0  
(3.7)

From the second equation at once there follows the first integral

raj C. (3.8)

To show that it is identical with the integral of areas presented
above, let us show that the constant c from (3.8) is in 'fact the
constant of areas. Actually, by turning again to Fig. 3, for the
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area OMM' swept by r in time dt we get area OMM' = do = r2 d ,

from whence there follows r 2,= 2 d c. The identity has been
proven.

Problem 3.8. Using the notation for the integral of areas
in polar coordinates (3.8), derive a formula for the radial vr

and transversal v¢ projections of velocity v of a point as it

moves in a conical section (Fig. 4).

Solution. When a point moves in a conical section r =
= p/(1 +ecos p), this problem consists of determining the quantities

dr dr .d U V =r d :and
2rdt r W

We obtain the derivative d/d=(esi from the equation of

the section, and the derivative dl/hdt.-c/r from the integral of
areas. Finally, we have

L e siqn , u,= (1+ees COS(?), - (-e+2e cosy).

From (3.9) there follow the formulas of elliptical motion for
velocities at the apsides:

v (T=0) 0+ e),U.= Vf((=180)= -)I (3.10)

Knowing the'ratio of velocities and radius-vectors at the apsides
(see problem 3.4), let us find /24

- j+e
u, r, -e (3.11)

Substituting into Eq. (3.10) the expression p = a (1 - e2 ) and

the constant of areas from (3.5) c = r v = r v , we again get

the familiar expressions (see problem 2.2) r a (1 - e), r =r _r a
= a (1 + e), and e = r + r

Problem 3.9. A point M with mass m moves around a fixed
center 0 under the effect of a central force that depends only
on distance OM = r. Knowing that the velocity of the point
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will change according to the law v = a/r, where a is a known con-
stant, find the magnitude and direction of force F and the trajec-
tory of this point.

Solution. -To determine the force F let us use the first of
the formulas (3.7) F = Fr = m (i - $2 ), in which we must substi-

tute the values of the quantities r and r$2 . To determine them,
let us use the integral of areas r2 5 = c and the formula for the

expansion of velocity in polar coordinates = r =(a/r).

Writing the relations = , r= , = a and ca

and substituting them into the formula for force F= -- r = - -

let us determine that the force F proves to be the attractive
force inversely proportional to the cube of the distance to the
points. Obviously, this force is not the force of Newtonian
attraction.

We can find the trajectory of the point from the relations

rrrdr r 1 i rr r' d- r -i from which

after canceling out dt there follows r c By inte-

grating the left and right parts of the equation, we get

C Ir = +C /where C= nr.*

Hence it follows that the equation of the family of logarithmic

spirals r=r e is the equation of the set of trajectories.
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CHAPTER FOUR /24

BINET'S FORMULAS FOR CENTRAL FORCES

Velocity formula. Suppose a point is moving under the

influence of central forces. We know that in the polar coordi- /25

nates r andp the velocity of the point is expressed by the

formula

Transforming the expressions for vr and v6 by means of the integral

of areas r2 d=c, we find
dr dr. d c dr

and

Let us introduce the new variable u = l/r. Then considering that

dit = j . d d' ca.
-i--S~ -d , we have Ur c ' and =- c

Finally we get the formula of the square of the velocity of the

point moving in the central force field,

-2=C2du2+(4.1)

which is usually called Binet's first formula.

Acceleration formula. Writing out the theorem on the change

in kinetic energy of a point moving under the influence of a

central force and dividing both partsof the equation by de, we get
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Let us replace v2 by its value from Binet's first formula:

2 9- = r JiT*

Using the formula
dr = r d
dq -r d(=- UtC

let us write the expression

M2du d .-a-+ 2,4 dmj -= ' -Sc --F , q

and elementary transformation of this formula leads us to

. C •( (4.2)

This expression of the acceleration of a material point moving
under the influence of a central force is called Binet's second
formula. Here the vector of acceleration is defined thusly:

ii. •rW F 0 O, - D T O. (4.3)

Problem 4.1. Using Binet's formulas, find the law of action
of a central force in which a point is moving along a circle with
radius r = R. Determine the dependence of force on velocity.

Solution. From Binet's second formula (4.2) there follows
the expression of the force - co

F, = -mCeu = - 4,~ = const,

that is constant in magnitude. From Binet's first formula (4.1)
we find

U= U= /- const, and c = vR = cost ,

so that

Fm2= Cst. /26

Thus, the motion of a point along a circle originates under the
action of a magnitude-constant attractive force F r  at velocity
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v, also constant in magnitude. This force is called the centri-
petal force. The acceleration corresponding to it is also constant
in magnitude and coincides completely with the centripet:al component.

Problem 4.2. A central force causes a point to move in a
logarithmic spiral r = r0 ex ( = ctg a) (Fig. 6). Find the

law of action of a force by using Binet's formulas.

Solution. Based on the
equation of the motion of a point,

Slet us set up auxiliary equations:

Fig. 6 which must be substituted into
Binet's second formula:

Fr =-ncau()a+4) -= _ c'(ctgd+ 4)

so that the force F is an attractive force directed toward the
asymptotic point of spiral 0, which is a dynamic force center.
This force is proportional to 1/r3 and is among the forces of
the same type as those examined in problem 3.9. Forces of this
type are encountered, for example, in the theory of motion of
microparticles.

The velocity of a point defined by Binet's first formula
varies inversely proportional to the distance of the point from
the center

so that the velocity increases with approach to the center and
vice versa (the direction of velocity can be arbitrary).

Based on the assigned r and v, we can determine the constant
of areas

c _ r_ -_ ru siruc-const.

S(4.4)
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This same relation follows directly from the integral of areas

c= Fx ui = rv sin r;)=cost.

Problem 4.3. Using Binet's formulas, find the exact law /27
of action of a central force directed toward the focus of an
ellipse, by using the equation. of an ellipse in the polar coor-
dinates r = p/(l + e cos 4), where p. = a(l - e2 ). (Direct problem
of dynamics for a central force.)

Solution. We know that if a point moves according to Kepler's
laws, the force causing this motion is a central force directed at
the focus of an ellipse. Based on the equation of the trajectory
of the point, let us set up auxiliary expressions:

I- ->- si=, e cos-,
p~p dq p

which must be substituted into Binet's second formula to find the
law of action of the force

F _ mc2  ' c2

r P praz

inversely proportional to the square of the distance from the
force center. The "minus" sign once again confirms that the force
considered is an attractive force. Usually the constant c2 /p is
denoted by p, so that

r r " (4.5)

The coefficient of proportionality P can be readily determined

from the expression p = a (1 - e2 ) and Eq. (3.4) of the elliptical

sectorial velocity in which b=a14 - e2:

2 C 4rna2 b t =const. (4.6)

Using Kepler's third law (see Chapter Two), we can easily estab-
lish the physical significance of the constant n = c2 /p. Actually,

if a3/T 2 is constant not only for one body moving in an orbit with
given a and T, but is also constant and identical for all bodies
moving around the same central body, then it is apparent that the
constant characterizes the intensity of the gravitational field
produced by this body. The constant p is called the gravitational
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parameter or Gauss' constant. Each body has its own gravitational
parameter independent of the gravitational parameters of the other
bodies. The relation between the gravitational parameter and the
universal gravitational constant f will be determined below, in
problem 4.6.

Problem 4.4. Determine the acceleration of a point moving
under the law of universal gravity at the moments it transits the
pericenter and apocenter. /28

Solution. Based on the law of actiog of he gravitational
force determined in problem 4.4, F = -mc /,pr ), so that for

r
acceleration we have

a I Cw = w. = - W=*~ - 'and =  pr-

Knowing that

p =a(-e 2 )= I(+e)(-e) - e) r -e), land r -a(I+e),

we get

___ c2(2(e) 4 -e 2) + e \2
P3 P3 -- e-p= P we=

Problem 4.5. Based on the law of action of a central force
(4.5) (see problem 4.4), derive the law of universal gravity and
find the relation between the universal constant of gravity f with
the gravitational parameter p and the mass of central body M.

Solution. Let us examine any two bodies, for example,
Sun and the Earth, with masses M and M . Each of these bodies

has its own gravitational parameter yp and p . The force with

which the sun attracts the Earth can be stated using Eq. (4.5):

S-___(47)

and the force with which.the*Earth attracts the Sun in accordance
with Newton's third law can be written as

F6 0 (4.7')
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From the law of equality of action and reaction, we get

. Ms /r'a Mo./ I whence
m* s = pl =const,
M. M Mpl (4.8)

where ppl/Mpl is the ratio of the gravitational parameter of any

planet to its mass. Therefore, the ratio of the gravitational
parameter of any body to its mass is a constant. It is called
the universal constant of gravity, or the constant of universal
gravity. Let us denote the constant of gravity by f, and then

),- fM. ,P1M..., pfMpi. (4.9)

These formulas establish the relation between the universal gravi-
tational constant with the gravitational parameter and with the
mass of the body. Substituting (4.9) into (4.7) and (4.7') /29
enables us to write the law of universal gravitation for the Sun
and Earth

IFI = 1MoL,

or for any other two masses m and M

JFI = r
ra

The gravitational constants are these: in the SI system

f = 6.67310- 1 1 m3/kg'sec2, and in the SGS system f = 6.673'10 -8

cm3/g'sec 2

Problem 4.6. Knowing that the mass of the Sun M = 1.97'1033

g, the mass of the Earth M = 6.1027 g, and the mass of the Moon

Mt = 1/81.5 Earth mass, determine the gravitational parameters of

these celestial bodies using the universal gravitational constant

f = 6.67'10 - 8 cm 3/g'seo 2

Solution. The gravitational parameters of the Sun, Earth,
and Moon, calculated by the formula p = fM, are, respectively,

yo = 132710 8 km3 /sec2 = 398,600 km3/sec 2 and t, = 4900 km 3/sec 2
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Problem 4.7. Knowing the radius of a celestial body R and

the acceleration due to gravity at its surface g, determine the

gravitational parameter V of the celestial body and calculate it

for the Earth (R+ = 6370 km, g = 9.81 m/sec 2 ).
O

Solution. Compare the formula v = fM with Eq. (1,10) from

problem 1.6. As a result we get

i = (4.10)

that is, this formula lets us determine the gravitational parameter

of any celestial body from the values of g and R. From this

formula we can calculate the gravitational parameter of the Earth

already calculated by us in problem 4.6:

8 = M = R = 398,600 km 3 /sec

Problem 4.8. From i and g determine the gravitational

parameter p of a celestial body and the acceleration g due to

gravity at its surface if we know the ratios of its mass M and

radius R to the mass M and radius Rt of the Earth. Compute

these quantities for the Moon, Venus, Mars, and Jupiter. The

corresponding ratios are given in Table 1.

TABLE 1

Planet M/M R/R Planet M/M R/R

Moon 0.123 0.273 Mars 0.107 0.535
Venus 0.814 0.958 Jupiter 314 10.95

Solution. From Eq. p = fM = gR 2 it follows that the gravi- /30

tational parameters of different bodies relate to each other as

the masses of these bodies: V//u = M/M,, whence v = 398,600"

M/Mt km3/sec 2 , that is, from the mass ratios given in the problem

conditions we can calculate the parameters of all these celestial

bodies. Also, from this same formula it follows that the accelera-

tions due to gravity at the surfaces of these celestial bodies

relate as follows:
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L _ i (.)= M (RV -

-Ps R Ma Re)

whence g = 9.81 M/M (R/R )- 2 m/sec2. By performing the computa-

tions, we get the following results (see Table 2).

TABLE 2

Planet I, km3 /sec 2  g, m/sec 2

Moon 4.903'103 1.62
Venus 324,460 8.70
Mars 42,650 3.67
Jupiter 125.16.106 25.7

Problem 4.9. Assuming that the central force is a gravita-
tional force F,.= - pm/r 2 , determine the trajectory of a point under
arbitrary initial conditions by using Binet's second formula
(Newton's problem, or the inverse problem of dynamics for a gravi-
tational force).

Solution. We know that Binet's second formula (4.2) in
conjunction with the law of areas (4.4) gives a system of differen-
tial equations from which, by knowing F = F (r, q, r, , t), wer
can determine the law of motion of a point acted on by a central
force. For the case when Fr does not explicitly depend on time.

(the gravitational force is specifically in this class of forces),
Binet's second formula is a differential equation of the trajec-
tory of the point. From this formula, the second-order inhomo-
geneous differential equation

d'ul d (e + u = - F / r cl u' =i / c 9

derives for the gravitational force. The solution to this equation
must be sought for in the form

S + A cos((g-.), (4.11)

where A and E are the constants of integration (we can easily
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verify that the proposed solution satisfies the equation). Con- /31
verting in (4.11) from u to r = 1/u, we get the formula

1+ - cos( + ) (4.12)

which must be compared with the equation of the conic section

=+ eeos q (4.12')

From Eq. (4.6) (see problem 4.3) it follows that p = c2/p, where
p is the gravitational parameter, so that the numerators of both

formulas under comparison are equal to each other. If we set the

constant c2A/p equal to eccentricity e, and the initial phase
of c equal to zero, the formulas can be assumed to be identical.

The zero-equality of the initial phase means that measuring
the polar angle p (at the focus of the conical section), usually
called the true anomaly, proceeds from the position of the radius-
vector corresponding to. the angle € = 0. Since in Eq. (4.12')

= 0 corresponds to r = rmin, then therefore measuring the angles

proceeds from the direction toward.the pericenter, that is, to the
point with polar coordinates (r = rmin, C = 0).

Thus, the trajectory of a point moving under the influence
of the gravitational force, under arbitrary initial conditions,
is a conic section, whose shape (ellipse, parabola, or hyperbola)
depends on the initial conditions imposed on the motion.

Problem.4.10. Using the equation of a conic section and
Binet's first formula, establish the relation between the orbital
eccentricity and initial kinematic characteristics of motion r0

and v0.

Solution. The equation of a conic section (4.12') allows
us to write

= +es ecosP= p-, d =-a si- (413)

Expressing the derivative du/dq by means of Binet's first formula,
for the initial conditions we can write
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e

Replacing p by its value from (4.6), we get

e si e =:t U-, 
+

-- IL0 , (4.14)

where the signs correspond to positive and negative values of /32
sin O0 where ¢0 = E (0,f) and ¢0 = E (7, 2n).

From the second equation (4.13) it follows that

P cos% = ,uc -lob
IP (4.15)

(the sign of cos 0 is regulated by the numerator).

Taking the squares of (4.14) and (4.15) and adding them, we
find the desired relation:

e=0+# (v'- 2,) * (4.16)

As follows from (4.16), eccentricity does not depend explicitly
on the polar angle ¢0 (the initial value of the true anomaly),

however for a given constant of areas c, the relation of ¢0 with

v0 and r0 = 1/u0 is expressed by a formula deriving directly

from (4.14) and (4.15):

tg (RO yZoc- )IL (4.17)

The law of sign selection here is the same as in (4.14). We note

that the constant of areas c = /- of conic sections for an ellipse

c=,/ J(1-e)j (e<t),, for parabola c=/2y r, (e=l),

and for hyperbola c=/La(e-4) (e >), whence the

positive sign of c follows once again.

35



CHAPTER FIVE /32

ENERGY BALANCE AND VELOCITY ALONG A SPACE TRAJECTORY

In examining problems on the motion of artificial celestial
bodies or spacecraft, we must bear in mind that the shape and
linear dimensions of trajectories (conic sections) determined by
eccentricity e and by the radius-vector of the pericenter r

depend exclusively on the initial launch conditions. In problem
4.10, the formula relating e with r 0 = 1/u 0 and v 0 was obtained,

and this formula can be rewritten thusly:

e= (5 .1)

Analysis of the energy significance of (5.1), in particular, the
energy significance of the expression appearing in the parentheses,
enables us to establish the dependence of the kind of motion on /33
these conditions.

Problem 5.1. A point with mass m is attracted to a fixed
center under the law of universal gravity. Write the integral of
the energy of the point.

Solution. To write the integral of the energy of a point,
let us employ the formula of the potential of the gravitational
force (1.7) (see problem 1.3), writing it in the form U = pm/r,
where p is the gravitational parameter. By selecting the integral
of energy in the form T - U = h, let us find mv 2/2 - pm/r = h,
where h is the constant of the energy of the point, or the total
energy. Dividing both parts of the equation by m, we get

_ = 2h = const, (5.2)

where h denotes the doubled total energy of unit mass.
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Customarily, Eq, (5.2) is called the integral of the energy

of a point moving in a gravitational force field. It enables us

to find the energy significance of v 2 - 2p/r 0 from Eq. (5.1).

Actually, since the integral of energy is satisfied for any

position of the point in question in orbit, that is,

lu- - 0 . r (5.2')

then obviously the difference v 0 - 2p/r 0 is twice the total energy

of unit mass (very frequently it is precisely this quantity that is

called the energy constant). Now Eq. (5.1) can be rewritten as

e= . (5.3)

Problem 5.2. Based on Eqs. (5.2) and (5.3) derive the formulas

for the initial launch velocities needed for insertion of a point

into orbit with conic section.

Solution. By specifying in Eq. (5.3) the eccentricity e

corresponding to different kinds of conic sections, by means of

(5.2') we get the velocities determining each kind of section.

We can readily obtain the formula of local circular velocity

as follows. Setting e = 0 in (5.1), let us write

whence

To determine y/C2 , let us use the equations

Y = cj/p/ and r -r. - p(l + e cos ( Pp,

whence

yl/c= /p = Ir o ' and !O = L /ro

In the particular case of the launch of a body from the /34

Earth's surface (r0 = R = 6370 km), the local circular and
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local parabolic velocities are called the first and second escape

velocities, respectively: 2

, R, (5.4)

When = 398,600 km3/sec 2 (see problem 4.6), vI = 7.91 km/sec,

and vii = 11.19 km/sec.

When calculating vI and vII we can use other formulas. Actually,

by comparing Eqs. (1.10) and (4.9) we conclude that = fM = gRt,
whence

(5.5)

In the case when a body is launched at an arbitrary distance
from the center (r0 > R ), we have

vVl ' - r0 "v (5.6)l.ci o 1.par

By combining Eqs. (5.6) and (5.5), we can set up other formulas
relating velocities for the launch of a body at altitude H above
the Earth's surface:

v1 . -V = =7,91 ____

f (5.7)

Vl.par V = " =119 +

Using Eq. (5.6), we can write /35

'l.par

The terms local circular and local parabolic velocities mean that
by these formulas we can calculate the theoretical values of these
velocities for any given r. The actual velocity of a point may or
may not coincide with these values. In the case when these velo-
cities are the actual velocities in circular or parabolic trajec-
tories, we will use the terms circular or parabolic velocity. In
place of the term second escape velocity we can use the term escape
velocity.
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on the basis of which, allowing for all the above-presented
relations, we can set up the following table (see Table 3),

Table 3

Circle h =-&/c'<O0 /r

e -=0 l.C

Ellipse < = r.
e<i

Parabola =0 u.= t/r l.pa

Hyperbola > >2F
e >I

Problem 5.3. The second Soviet space rocket had a velocity
of 2.31 km/sec at the distance 320,000 km from the Earth's center.
Considering that motion occurred in a conic section, determine the
shape of the trajectory. What velocity did the rocket have at the
altitudeH= 230 km from the Earth's surface?

Solution. Let us use Eq. (5.2) determining the invariancy
of the following quantities for this trajectory in the calculations:

r.320000 r - o660

Let us determine the constant of energy from the velocity:

S284 km2

1.2ooo sec 2

whence it follows that the trajectory is a hyperbola. Further,
we can determine the velocity of the rocket at the altitude
H = 230 km:

km
r = h + R 11,12 sec

For comparison, we can calculate the local parabolic velocity at
this altitude:

+H) = 0 99 km
.par sec
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The slight difference between the actual velocity and the theo- /36
retical parabolic velocity enables us to state that the hyperbolic
trajectory is nearly the same as a parabola.

Problem 5.4. Determine the first vI and second vll escape

velocities for the Moon, Venus, Mars, and Jupiter, by using the
gravitational parameters and radii of bodies listed in Table 4.

TABLE 4

Planet 1, km 3 /sec 2 R/km

Moon 4903 1740
Venus 324,460 6100
Mars 42,650 3407
Jupiter 1.25.108 69,900

Solution. By calculating velocities using the formulas

SI " I and VFT/ v1r

we get the following velocities (Table 5).

TABLE 5

Planet VI , km/sec vll, km/sec

Moon 1.68 2.37
Venus 7.29 10.28
Mars 3.54 4.99
Jupiter 42.30 59.64

Problem 5.5. To the first approximation, the orbit of the
Moon can be assumed to be a circle with radius r = 384,400 km =

60.4 R . Determine the local circular vl.ci and local parabolic

vl.par velocities of a body relative to the Earth at this distance.
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Solution. From Eqs. (5.7) we have /37

i=7,91 = 1,02 km/sec,

Vl.par i = ,.44 km/sec.

Problem 5.6. Determine the local circular and local para-
bolic velocities of a point moving around the Sun in the Earth's

circular orbit (r = = 149.6'106 km).

Solution. The velocities of the solar satellite can be
calculated from expressions analogous to Eqs. (5.6):

S1327, = 29.78 km/sec,
r _f -F!149.6. 107

Vl.par = / i = 42,(4 km/sec.

Problem 5.7. Knowing the expressions for the radius-vector
of a point in elliptical motion about an attracting center,

F - po /(+ecose) Ia (4 -ecosE) Fo

-0
where the unit vector r is the unit vector in the radial direction,
E is the eccentric anomaly, and q is the true anomaly, find the
expressions for the vector of orbital velocity of this point in
orbital and inertial coordinate systems..

Solution I (for the orbital system of axes). Any system of
axes one of whose planes coincides with the orbital plane is
called an orbital system of axes. In this case we can use as the
orbital system a moving system of polar axes r and TO (Fig.
7 a), all the more so because the components of the orbital
velocity v in the radial and transversal directions are already
determined (see problem 3.8). Using Eqs. (3.9), that is,

v,= -e sin, v = -- (+ ecos), and c/=Z,/

let us write the expression for the vector of orbital velocity in
the orbital system of axes:

=9+ = 1 esLTqFo+(I +ec osp)qo1
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Solution II (for an inertial system of axes). The same system

of polar axes r/0 and 0 placed at a point which for this problem
we can assume to be fixed can be considered an inertial system of /38
axes. It is convenient to select the pericenter of the orbit as
this point (Fig. 7 a).

a Let us write the formulas
for transforming the axes of the

A moving system rU and 0 into the
axes of the fixed system r and

I r f ' = T ° = coS + - ° sin ,

- 0 - - j;,0 sin

where p is the true anomaly of
b point M, that is, at the origin of

the moving system. By substituting
-- the formulas of transformation into

2 Athe formula velocity obtained above,
, we get the expression for the

orbital velocity framed in the
- inertial system of axes:

e -sin Y ( F; 0. co T siny)".1 +- e • -

Fig. 7
Key: 1. v

rel
2. vl.ci To transform, use the relations

of elliptical motion (2.4) and
(2.5), whence

=sin ESinY = -e cosE

Cos( = CosE -e
1- e osE '

1 - e cos E

so that /39

J i/F - sinE -o ( -e2)cos E o
1- e cosE - .-ecosE

= - - cosE e2C
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When p = a (1 - e ), we can write finally

- -e cosE - Si E Fr o + V-ecos E - ,

- I . sinrL E+(- e') cos E 4 + _ecosE
ry I - ecosE - e cosE

For the particular cases of the pericenter (E = 0) and apocenter
(E = 1800), we have

S V-e a +e

Note that the latter formulas can be obtained directly from relations
(3.10) (see next problem).

Problem 5.8. Derive formulas relating velocities at the
apsides v and v , energy constant h, and total orbital velocity

v with semi-major axis a of the elliptical orbit.

Solution. In problem 3.8, based on the integral of areas
the following formulas were derived:

v = c (+ e) /p, v,- c (1-e)/ p

and in problem 4.3 it was established that -c -
O

p , so that c= I

and c1p=y-_p, whence

• e (5.8)

In addition, for elliptical motion p=a(1-e'), therefore

nC 1- o 'c i (59)

and the formula relating velocities at the apsides is as follows:

= e (5.10) /40

v,=,. -e (5.10')
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From problem 5.1 it follows that the constant of energy h
is defined by the formula

r - r. (5.11)

Substituting instead of v the expression from (5.9) corresponding

to it, and instead of r , its value r = a(i - e), we get

( +e) 2K (4 - e) j'
a ( e-e) -(I -- -- a (5.11')

From Eqs. (5.11) and (5.11') there follows the formula relating
v and a:

(5.12)

Formula (5.12) is also customarily called the integral of energy.

Problem 5.9. Express the velocity at any point of an ellip-
tical orbit in terms of the eccentric anomaly.

Solution. Let us substitute into Eq. (5.12) the formula
for the radius-vector expressed in terms of the eccentric anomaly
(see problem 2.1), r = a (1 - e cos E). As a result we get

-ecosE l-eecosE
V a(I-ecosE) i-ecosE

The same result was derived in problem 5.7 in another.way.

Problem 5.10. Determine the total orbital energy of a point
moving under the influence of a gravitational force as a function
of the semi-major axis of elliptical orbit a.

Solution. Let us write the equation of the energy balance
of the point:

h T+ T -U= n m.(,,_ U -1
2 r 2 (5.13)
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By substituting into (5.13) instead of the constant h, its value
expressed in terms of a, that is, Eq. (5 .11'), we find /41

IL1 ~~I~r-~oonst. (5.13')

Thus, the total energy of a point moving in an elliptical orbit
with semi-axis does not depend on the radius-vector. At the peri-
center the potential enerby V = - pm/r is at a minimum (the radius-
vector r is at a minimum, and the potential U = lm/r is at a
maximum). Therefore the kinetic energy T = mv2/2, and this means
also the orbital velocity v is at a maximum. But at the apocenter
the potential energy is at a maximum and the kinetic energy and
velocity are at a minimum.

If two satellites move around a planet in circular orbits,
the one that is farthest from the planet has the greatest orbital
energy.

Problem 5.11. Set up a table of energy balance for four
characteristic.points of an ellipse by using the integral of
energy.

Solution. The following six points (Fig. 7 a) are called
the characteristic points of an ellipse: the points of inter-
section of the ellipse with its semi-major axis, or apsides, that
is, pericenter rr( = E = 900) and apocenter a (4 = E ='1800),
points A ( = 900) and A' ( = 1800), whose radius-vector is the
focal parameter of the ellipse rA = rA, = p = a (1 - e cos EA ) =

= a (1 - e2), and the eccentric anomaly EA = EA, = arccos e, and

the points of intersection of the ellipse with its semi-minor axis
B and B', whose radius-vectors are equal to the semi-major axis
based. on the relations

r,- ri, V(ae)" +b,  ./.V e2 +a(-e a.

For the two last points the corresponding olar angle (true anomaly)
= arccos (-e), since sin = b/a = 1l-e cos 4 = -e, and the

eccentric anomalies EB = 900, EB, = 2700

Using the energy relations (5.12), (5.13), and (5.13') for
four (of six) characteristic points of the ellipse, let us deter-
mine the quantities

- - = , V=---p--, and h=-

and let us set up the following table.
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TABLE 6

'haracteristic
points 'of ' E r T/IM Vn /m /pmL

elliose
S 01 a(i-e) i+e e

elliptical orbit transits the end of its semi-minor axis B its
velocity is equal in absolute magnitude to the local circular

90* crC C Ca(I-e2)  2 a(--e 2 /42

8 arccosC_ ago°
velocity v

S I80°  !80°  a(+ e) - e

Problem 5.12. Prove that when a satellite moving in an
elliptical orbit transits the end of its semi-minor axis B its
velocity is equal in absolute magnitude to the local circular

velocity vl.ci.

Solution. It was proved in problem 5.11 that the radius-vector
of the end point of the semi-minor axis of an ellipse is equal to
the semi-major axis (rB = a) (Fig. 7 a), therefore the orbital

velocity of this point can be calculated by Eq. (5.12),

and this expression coincides with the expression for the local
circular velocity at distance r = a from the attracting center.

Fig. 7 b shows the elliptical and circular orbits corresponding
to this case. These orbits have the same total energy, since the

energy constant --,/ a -pr/rj is the same for them. Note

that the equality of velocities can derive directly from the
equality of the kinetic energies of these two orbits, since total
orbital energy h and the potential energy V = - pm/r for them are
also the same. From Fig. 7 b it also follows that the velocity
vectors vl.ci and vB form an equilateral vector triangle.

Problem 5.13. Find in an elliptical orbit the points where
the velocity is equal to the mean geometrical velocity at the
pericenter and at the apocenter.
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Solution. In problems 5.7 and 5,8 we found the formulas for
velocities at the apsides:

i-rj e ,' and V/ -

The geometric mean of these velocities.is of the form /43

However, in problem 5.12 it was shown that this velocity is
attained when a satellite moving in an elliptical orbit transitsthe end point of its semi-minor axis where rB = a. Thus, both

points desired lie at the end points of the semi-minor axis of
the orbit (E = 900 and 2700).

Problem 5.14. When a satellite moving in an elliptical orbit
transits the end point of its semi-minor axis B (Fig. 7 b), its
velocity vB is equal in absolute magnitude to the local circular
velocity vl.ci, so that the vectors vB and v .ci form an equi-
lateral vector triangle (see problem 5.12). Determine the relative
velocity vrel = Vl.ci - vB and express it in terms of the orbital
eccentricity.

Solution. The vector of relative velocity is the closing
leg of the equilateral vector triangle, so that

2 2 2
rel = Vl.ci + vB 2 l.ciB cos (B

where vl.ci = and cos (v.ci,B) = cos (3600 - Y) = cos y =

= cos (B - 900) = cos (900 - B) = sin B"

It was established in problem 5.11 that the true anomaly of the
end point of the semi-minor axis q, - arccos(-e), so that

siT g -sln[arccos(-e)j 1(-.

Substituting this expression into the velocity formula, we have

v 2  2 v2 (i- R-), r = l"[l-(f-e )lrel l.ci rel 1ci

Expanding in a series, we get an approximate formula of relative
velocity:

Vrel Vl.ci e(I+ ) .
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The angle at the base of the vector triangle is determined by
the formula

Problem 5.15. At some point of an orbit at distance r from
the attracting planet, its satellite has the velocity v. The
local parabolic velocity at this point is v l.par Determine the

semi-major axis of the elliptical orbit a. /44

Solution. The integral of energy can be written in terms
of a local parabolic velocity as follows:

2 2 ppl 2  2
h = v 2  pl v 2  v

r 1.parl

where h = - 1pl/a, so that

a = pl
2 2

Vl.par -

If Ppl is unknown, it can be determined from the known r and

1 2
Vl.par :pl = Vl.par r.

Problem 5.16. Upon transiting across the pericenter, the
satellite of a planet has the velocity v . Its local circular

velocity at the pericenter is vl.ci . Determine the eccentricity

of the elliptical orbit. Solve this same problem for the case of
a satellite transiting the apocenter.

Solution. By writing the integral of energy v2 = p(2/r - 1/a)
and using the formula of the radius-vector of the pericenter, we
can state

un 2L ?-It (1-e) \ 2
r, a rx ' I. (l + e)Sl.ci

Whence

2
.ci 7T
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Since for an elliptical orbit 0 < e < 1., t.hen we have

S2 T .e U.ci <Uci . par

Thus, to determine the eccentricity it is sufficient to know the
v and v at the pericenter.

n 1.ci n

We can easily show that the formula obtained above for the
eccentricity can be derived directly from Eq. (5.3):

Since v > v 1  , the expression in the parentheses is negative, /45
R 1.ci v

and therefore to ensure e > 0 we must select the formula with a
"minus" sign, then we have

e 1 -1.

When the satellite transits the apocenter, we have

whence

aci
1.el

so that 0 < . < that is, O u < Uci

Problem 5.17. The greatest distance of Sputnik-3 from the
surface of the Earth H = 1880 km, and the smallest h - 230 km
(Fig. 8). Determine its velocities at the apogee va and at the
perigee v

49



Solution. From Fig. 8 the.geometrical relations

2a = 2R, +H+ ,

a =IR, + -0(H+ h)= 6370+
+ (1880 + 230) = 7425 km.

are obvious. The eccentricity can be determined by Eq. (2.13 t):

e ,- rr I(Ra +H)-(R6 - h)_
r.+r R + H)+(Ra + h)

H- h, 1650
2R + H +h 14,850 0,4.

S I To compute the velocities at the
apsides, apply Eqs. (5.9)'and

R _ (5.10):C L

MU I e- 0=1 h!
i- V T-.-e 7425 1 +0I41 sec

) 4 6 _I = 5 6  -- = ,'6 Za Ox -- e0,89 sec

Fig. 8 Thus, the velocity at the perigee /46
is 25 percent greater than at the

apogee.

Problem 5.18. Calculate the velocity of a satellite whose

orbit has a large eccentricity at the perigee v and at the

apogee va. The largest distance of the satellite from the Earth's

surface H, and the shortest distance h are 42,450 and 252 km,
respectively.

Solution. Calculate a and e, as in problem 5.17:

Ra R-L (1+ h) - 6370 + - (42,450 +252)-27,721 km,

2 H- = 4L298 076.
&2R +H+ 55,442

V= / - 0.76 = * , 40 km/sec,
0 0 f1+0,70

OR= U s-+e= 1.40 +o0.76 = 10,27 km/sec.
1-e 1-0,76

In this case the velocity of the perigee is more than seven times

the apogee velocity.
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Problem 5.19. Find the largest and smallest velocities of
the Earth around the Sun. Compare the velocities obtained with
theEarth's mean heliocentric velocity.

Solution. In problem 2.3 the larges (aphelion) r and smallest
(perihelion) r distances of Earth from Sun were cal:cuPated: r =

6 " 6
= 147.110 km, and r = 152.1"10 km, and it was also shown that

the arithmetic mean of these distanceg is equal to the semi-major
axis: ray = 1/2 (r + r ) = 149.6'10 km. In problem 2.5 the

mean integral value of the heliocentric distance of the Earth
Er]t was determined. Using these values, we can calculate the

quantities we seek. Thus, the orbital velocity of the Earth
reaches its largest andsmallest values at the perihelion and
aphelion, respectively:

S) = =27*4. *i -0 30,28 .km/sec,V d47, . G  149.6 .10'
(5.14)

,Oct - = V127. 152, 10 gi 10 )=275km/sec.

(we can find v also by Eq. (3.6) from problem 3.4). The arith- /47

metic mean of these velocities is:

v (+ 8)= )o +- ' . - 2 *90 km
av sec

Now let us determine what we must adopt as the mean integral
velocity [v]. As already pointed out in problem 2.5, averaging
can be carried out with respect to any variable used in the theory
of elliptical motion: with respect to time t, mean anomaly M,
eccentric anomily E, or true anomaly P (see problem 2.1).

Let us first look at time averaging, when

0

where T is the theory of the Earth's revolution around the Sun.
Adopt as the new variable of integration the eccentric anomaly E,
since in problem 5.9 we derived a convenient formula relating V ,to
E:

4- .ecos
Sa V -ecosE
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From Kepler's equation (see problem 2.5) we have

E - e stn E

=n(t-T)=M, dE-ecosEdE = ndt=dM, dt =

= (-e cosE)dE/a ,

so that we finally get the elliptical integral of the second kind

[VJ. =- + SI' E  d = dr  I (- L ecos E -
0 0

- e 4cos 4 E+...)d=L (E- eE- e2 sin2E +--e 4E+..
8 Tn a--t 64

2R. 0 L +e2 -3 e4+...).

Since T = 27/n, we find

We can easily show that the same result can be obtained by
averaging over the mean anomaly M, which is an analog of time in
elliptical motion. Actually, since ndt = dM = (1 - e cos E) dE, /48

s]. = oudM - S 1-ecos E E= I -
.% a

- ea + e4 +...).

On the other hand, averaging over the eccentric anomaly E
leads to a different result:

2x

-2 Ka (1 + ecos E)+ E e os E...dE- a(+ 4 +...).

Averaging with respect to the true anomaly p, we have (see problem
2.5, where dq = a/r/l- e2 dE)
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ody/ ;7a-ecosE VI-ecosE)

V- e(1+2ecos e+ .e2cos E ...),E

Thus, it is difficult to give an exact determination of the
Earth's mean velocity, however considering the smallness of the
eccentricity of the Earth's orbit (e = 0.01678), with adequate
accuracy we can adopt as the mean Earth velocity the first term
in the expansions obtained above, that is, [v] = hJo/a. In other

words, the mean Earth velocity (or the velocity of another planet)
can be assumed, with adequate accuracy, to be the velocity that it
would have if it moved uniformly in a circle with a radius equal
to the semi-major axis of its orbit. This definition of the mean
velocity of the Earth coincides with the definition of its helio-
centric circular velocity as the Earth transits the end point of /49
its semi-minor axis at a distance a from the Sun (see problems

5.12 and 5.13). Moreover, we note that the quantity [v] = e //a

is simultaneously the circular velocity of a point at distance

rav [r]E = c from the Sun. On.the other hand, the mean velocity

can be defined as the heliocentric circular velocity of a point at
distance [r]t = [r]M:

For small e, as before we can use the definition of the mean
velocity presented above.

Thus, by agreeing to call the quantity [v] = ®/ea the mean

Earth velocity, we note that it does not coincide with the arith-
metic mean of the velocity v and v . To derive the formula

relating [v] with v and v , let us substitute in (5.14) [v] or

[l], _ 2p. ) v,
r, a r . (5.15)

Wecan set up simpler formulas of the relationship for small
eccentricities. Actually, from (5.14) we have
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-aa 2- r.J r i - (5.16)
a r r 1+e

Hence, for small e we have

,2 [,)]2 (1 2e), v ( []( -2e),

S[ e), [ -e), (5.17)

Problem 5.20. What minimum initial velocity must be important\
to a spacecraft moving parallel to the Earth's surface at altitude /50
h = 230 km for it to reach the Moon at its apogee, by moving in an
ellipse that is tangent to the Moon's orbit. The semi-major axis
of the Moon's orbit aej = 384,400 km, and the eccentricity of the

Moon's orbit e,,/= 0.055. Solve the same problem for the case of

arrival._at the Moon when it is at the apogee of the given spacecraft.

Solution. Calculate the apogee and perigee distances of the
Moon: r.,-gf((+e,)= 405,500 km, and r = (4-e ) = 363,000 km.

To reach the Moon situated at the apogee 0 of its orbit

(Fig. 9), the spacecraft must move in ellipse I (or I') tangent
to the orbit of the Moon at apogee Lq, and with its perigee at the

launch point A (under the condition the initial velocity is hori-
zontal). Here the semi-major axis of orbit I is

a,=-L(AO+

where r-R, +h = 6370 + 230 =:6600 km is the perigee distance

of the spacecraft, so that a, = 2 (6600 + 405,500) = 206,000 km.

Let us find the initial launch velocity:

S ( - 0 206,000

= 0, 90 km/sec.
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Using the equality i " 'a , we can determine the eccentricity

of the transfer ellipse:

e= 398,900= 0
I + r, 412600 6

(the orbit is strongly elliptical).

For the case of the spacecraft
I reaching the Moon situated at the

perigee rq of its orbit, we must

consider the transfer ellipse II

OtL, - ------ 4 (or II') (r. r, )./ In this

case we have

/51

Fig. 9 a = (BO + n,) = ( + ) (6600+363,300) i84,950'km,

Key: 1. Orbit of Moon ( 0 ( 4 /
=x '7 8,00 =6 -65-0 sec'

e = - r r, 3- r 556,700 0
I + r~ r , + r -369,900

By comparing the resulting values of v and v with the
I II

corresponding values vl.par for r = r , we find vl.par

-= = =0. g gkm/sec.

Problem 5.21. Two satellites with equal masses move in the
same direction around an attracting center in coplanar orbits,
one of which is circular with radius r0, the other is elliptical

with radius-vectors of the pericenter and apocenter r0 and 8r0'

respectively. Assuming that the satellites by direct docking
connect with each other at the point of tangency of their orbits
and move together in further motion, find the radius-vector of
the apocenter of their new orbit.

Solution. Since the semi-axis of the circular orbit I (Fig.
10) a, = r0, and the semi-axis of the elliptical orbit II aI =

= 1/2 (r0 + 8r0 ) = 9/2 r0 , the velocities of both satellites at

the point of tangency of their orbits, being simultaneously the

55



pericenter n of orbit II and the new orbit III, are as follows;

V 1  V I - F

Upon satellite docking, velocity change occurs. The velocity
of a new satellite, which is the arithmetic mean of the velocity
vI and v I (for the same masses of both satellites), is

The semi-major axis of a new orbit is found from the integral of
energy

whence

= .(2- '23 and = -r = 1ro
a ro 36 - 136 ro

Knowing that 2a r° Pri we find

72 49
23 -, 23

/52

Fig. 10 Fig. 11

AA

Problem 5.22. Derive the formula relating the angle " U( ,)

to the angle of the true anomaly for the parabolic orbit (Fig. 11).
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Solution. Let us use the relations of parabolic motion

In addition, for.any conic section the formulas sinL =c/rv,

and c = , are valid, whence

p/Z ( +cos) _

p cos I+cos)

= o = 4-cos -

At the pericenter c=o, and a=- . With separation from the

pericenter ¢ increases, and a/ decreases, so that

This result is valid only for parabolic orbits.

Problem 5.23. Establish the dynamic meaning of the integral
of energy

for parabolic (h = 0) and hyperbolic (h > 0) motion.

Solution. Let us rewrite the integral of energy in the form

v= +21/r,

whence

lim v' v 2 = lin ( ) = ik = const,

so that the constant of energy h (double the total energy of unit
mass) can be interpreted as the square of the velocity "at infinity."
Here the interval of energy can be written as

v V .par (5.18) /53

The quantity v. is also called the excess hyperbolic velocity.
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In hyperbolic motion (h.= 0), the quantity I, =0 means

that the true velocity coincides wholly with the theoretical value
of the local parabolic velocity at a given point of the orbit
(v = v l.par) and that "at infinity" a stoppage occurs (t=). - 0),

In hyperbolic motion (h>0) the inequality _ =v >0

means that the true hyperbolic velocity exceeds the theoretical
value of the local parabolic velocity (v > v .par) and the point

will move indefinitely long along the asymptote of the hyperbola

at constant velocity V. = ~L=om . the velocity v is the smallest

possible velocity for the given hyperbola. Here the difference

between v and v willitend to zero , (lim v2  =0)' and the
OD r-c 1.par

theoretical velocity "at infinity" vCD coincides with the actual

hyperbolic velocity (lim V V,)

Problem 5.24. Determine the velocity at which a meteorite
enters the Earth's atmosphere if its velocity "at infinity"
v = 10.0 km/sec.

Solution. Let us write the interval of energy in the form
of expression (5.18), determining in advance thati

2 2 2
h = v 100 km2/sec > 0:

O

thus, a hyperbola will be the meteorite's trajectory. To determine
the theoretical value of the local parabolic velocity upon entry
into the atmosphere, we will assume that entry occurs at an altitude
of about 200 km above the Earth's surface so that v1  = 11.0 km/
/sec (see problem 5.3). Let us calculate the entry par velocity
of the meteorite into the atmosphere:

=V +vl 1par 2=14.9 km/sec.

Problem 5.25. Knowing that for a hyperbola e > 1 and a < 0,
and that the formulas of elliptical motion can be transformed into
the formulas of hyperbolic motion by replacing a with - al, let
us write the formulas of the velocity of a point v and the constant
of energy h for hyperbolic motion, bearing in mind the motion along
the branch of the hyperbola whose focus is the attracting center
C (Fig. 12).

Solution. Using the formulas of elliptical motion /54

v=-( 2  ) , = _ _
r -a a
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I and replacing a in them by -lcl,
for the hyperbola we find

+'A TV -,L (5.19)

c(g)x X We note that the resulting
formulas (5.19) enable us again to

,/ , obtain the results of problem 5.23.
/I \ Actually,

2Xal lal

' r v +

Fig. 12

2 2  2whence, by taking the difference v = v - v to be a con-Sl.par
strained quantity, we again have lim v = v .o

Problem 5.26. For a spacecraft 500,000 km from the Earth's
center, the theoretical velocity "at infinity" v = 4.00 km/sec.

Determine the true velocity of the craft v and the length of the
semi-major axis of its orbit a1l, by first ascertaining in
advance the shape of the orbit.

2Solution. Determine the constant of energy: h = v = 16 /55
2 2

km /sec > 0. Now we can conclude that the craft trajectory is
a hyperbola (Fig. 12). Let us find the semi-major axi,sof the
hyperbola from the integral of energy

so that

fal O = 398,600/16 = 24,900 km.

We can calculate the instantaneous hyperbolic velocity from the
formula

2 2 2
v =v + V

OD l.par'

where

l.par .. = 23*&600/50000 .26 km/sec,

so that v = 4.19 km/sec.
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Problem. 5.27. Establish the formula relating the smallest
velocity vOD and the largest velocity v for hyperbolic motion

(Fig. 12).

Solution. Using the formula

S-u and IL -P

let us obtain the relation

v0-,vJ - 2r2/p -

Knowing that

lp f/(R+ )

let us determine

V. V. e+1 or V . +- (5.20)

(compare with Eq. (5.10') for elliptical motion).

Problem 5.28. A spacecraft moving along the asymptote of a
planetocentric hyperbola approaches a planet with gravitational
parameter p "from infinity" at velocity va . The distance of a

craft from a pericenter is r . Determine by what angle 2X the

vector of the planetocentric velocity will rotate after the craft
transits the pericenter.

Solution. Since CB = Af for a hyperbola (Fig. 12), AO = CO,
so that

A cos i _+r/jal

where i= IL •

Finally,

2 =2 ar cos(4 + r, V'/ ')I
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Here the radius-vector of the craft will rotate relative to the

launch planet by the angle y = 1800 -2X. If, for example, it is

not rf that is known, but the distance of the craft from the

planet CB. (distance of planet from the asymptote of the hyperbola),

by denoting CB = An = d, we can write

2A=2 crctq-= 2 arctcr V d

Let us illustrate this problem by the following example.

Suppose a spacecraft is inserted into an Earth orbit at the alti-

tude r = 230 km with a hyperbolic launch velocity v = 12.00

km/sec. The orbit of the craft is situated in the orbital plane /56

of the Moon. The approach of the craft to the Moon at the peri-

selenion is r,j = 6300 km. In this case, to determine the angles

2X and y first from the initial data we must find the elements of

the geocentric hyperbola

Jai=1 0 1 7a 6600 -1 3840

The theoretical velocity "at infinity" must be determined from the

formula

CAr2)/ -= VFL l

or from the formula

so that
v OD = 4 .82 km/sec.

Since the direction of the asymptote of the geocentric hyperbola

coincides at the limit with the direction of the geocentric radius-

vector of the craft, it can be assumed that the absolute geocentric

velocity of the craft vu/ is perpendicular to the translational

circular velocity of the moon 4 , which, as was determined in

problem 5.5, is 1.02 km/sec. The relative selenocentric velocity

of the craft : is, in accordance with the theorem' of the

addition of velocities,

Vl v = (4.82)+ (i02) = 4.92 km/sec.
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Knowing that F~-I= 4900 km 3/sec 2 , for the angles 2X and y weget

2X= 2arccos I + 6 oo0.92) ' 2arccos0.033 4176'

T 180 0-2\ 4"' The parameters of the selenocentric hyperbola

are as follows:

9c0 kmr A + 0 + I = 30.5 ,c, (49.2) / ' l jaj 203

and the selenocentric craft velocity at the periselenion is

1 -t =V e - 4.92) -:5 5.08 km/sec.

From the velocities obtained v / = 12.00 km/sec, va)/t = 4.82

km/sec, and = 4.92 km/sec, we can determine the minimum angle

of rotation of asymptote 2XJthat is possible for this problem,
corresponding to the case when the hyperbola is tangent to the
surface of the Moon ( r, = = 1740 km):

21,_ = 2 arccos (1+ )= 2arcco5.0i 167*

This angle corresponds to the maximum angle of rotation of the
geocentric radius-vector y = 130.

We can easily show that the values of the angles 2X and y
lie at the limit

2arccos (i + R ) 2 4 1i80o, 0 < 180 - 2 A, /57

where R is the radius of the planet. This means that even when
tangency is involved the trajectory will not become a hyperbola.
So in the case of no values of r can capture occur for this

problem, that is, there is no possible case when the hyperbolic
trajectory converts into an elliptical trajectory.
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CHAPTER SIX /57

TIME OF MOTION IN A SPACE TRAJECTORY

The time during which a satellite twice successively transits
its pericenter is called the period of revolution (orbital period)
T of the satellite around the attracting center. The number

rTL-- is its mean angular velocity, or its mean velocity (see

problem 2.1). In problem 4.3 the relation of period T and the
semi-major axis a with the gravitational parameter of central body
p (4.6) was established:

The relation between the periods of revolution of different
satellites around the same attracting center is characterized by
Kepler's third law, established empirically:

.2 - (6.1)

In the general case of motion in a conic section, the time
of motion of a body to an arbitrary point on the trajectory is

determined by using the integral of areas r2  = c (see problem
3.7), from which in particular we can get the familiar Kepler's
equation derived in problem 2.1 from geometrical ratios.

Problem 6.1. Derive formulas for calculating the period of
revolution of a "zero" satellite Tze r (r = R ), and also for the

period of revolution of an arbitrary Earth satellite T expressed
in terms of the period of the "zero" satellite Tzer

Solution. From Kepler's third law (6.1) it follows that
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SerT= (6.2)
T2  R ' z
zer

Let us calculate T from the formula for uniform circular
zer

motion:

2T R 263.370
zer v - 9160 84.40 min, /58

so that

T= 84. 40 6370-o /min. (6.3)

Problem 6.2. The perigee altitude of a satellite H = 230 km,

and the apogee altitude H = 950 km. What is the period of its
revolution?

Solution. By Eq. (6.2) we can write

T Tze 2R + H+ H, + H

=T ++-.H H ) H 84.40 (1t+ - 2o +o = 96.V31 min.

Problem 6.3. Find the period of revolution of a satellite T
and its mean motion n if the semi-major axis a and the gravitational
parameter of the attracting center p are known.

Solution. Let us use the result of problem 3.3, in which it
was established that when a point moves in an ellipse its radius-
vector sweeps out the total ellipse area fab in one period of
revolution T, so that T = 2fab/c, where c is the constant of
areas. Substituting in place of c its value /Jp from problem 4.3,
we get

2~.ab 2a b 2a~s la

- V' :--- "(6.4)

Since TT-', the mean motion is

a 
(6.4')
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Using Eq. (6.4), for example, we can determine the radius of the
circular orbit of a 24-hour AES:

Cr = ) =3986 (O24 3600)2 _= 375.5-10
' = 42,170 km.

L 2  = 4 (3.1~)2

The altitude of the orbit of a 24-hour AES is 35,800 km (see /59
also problem 1.7).

Problem 6.4. Show that the period of revolution of a
satellite T depends only on its initial velocity and does not
depend on its direction.

Solution. Based on Eq. (6.4) we can conclude that the
period T is uniquely determined only by the magnitude of the
orbital semi-axis. In turn, the semi-major axis a is associated
with the algebraic value of the initial velocity v0 by the integral

of energies v -) , so that the period T does not

depend on the direction of the initial velocity. This means that
if at some point in space a launch is made with elliptical
velocity v (v < v0 < v ), for any direction of this

0  .ci 0 l.par
velocity ensuring the existence of the flyby trajectory, the
satellite will be inserted into orbit with the same semi-major
axes a and, therefore, with the same period. These orbits can
have different eccentricities. In any case the satellite will
return to its launch point after the same time interval.

Problem 6.5. Find the relation between the periods of revo-
lution of planets around the Sun T. and the semi-major axes of1

their elliptical trajectories ci (give the mathematical substan-

tiation of Kepler'sthird law).

Solution. To justify Kepler's third law let us utilize the
familiar relation, which is of the form

J.G -P

8 3 2
for heliocentric motion. Since the constant Ve =1327'10 km /sec 2

characterizing the Sun's gravitational field appears in the left-

hand part of the equation, for all heliocentric orbits the

following condition is satisfied:

a 3 

S 2 (6.5)
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or

T, a

2 2 a
(6.5')

expressing Kepler's third law. /60

Similarly, for geocentric orbits we can write

as a a- ! a km 3

-- ='- - - 4 (, 398,600 2 ) "
sec

Problem 6.6. The orbital perihelion of the first Soviet
space rocket that became a satellite of the Sun is at a distance
from it r = 146.4'106 km, and its aphelion is at a distance

P6
r 197.2'106 km. Determine the period of revolution T of the

artificial planet ;around the Sun.

Solution I. Find the semi-major axis of the orbit of the
artificial planet (AIP):

a = -(r, + r)= (446.4+ 197.2) 10= 471.8 106 km.

To determine the period of revolution of the AP let us use Eq.
(6.4) since the parameter p = 1327'108 km 3/sec 2 is known:

2 !a ' c( __3_T AP- -=2% =6.28 1327810AP 1.10 1327.10 -

=6.28v38,2T-10 '2 = 38.82.10c = 449.27 days

Solution II. Knowing the orbital semi-major axis a of the
AP, we can use Kepler's third law (6.5'):

IP p Whence when T = 365. 26iysc =49.6-f0 - k

T = 365.26 =

=365.261.52 = 449,27 days.
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Problem 6.7. Using the integral of areas in the equation of
a conic. section, set up the general integral formula of the time
of motion in the conic section as a function of the true anomaly
(polar angle) 4.

Solution. Using the integral of areas in the form r2 =  /61

= c and the equation of a conic section =+ecoscV;

we get

di = r 2 d = P. dc c + e cos cq)

Let us reduce the coefficients p2 /c by means of the relation c= .i,

(see problem 4.3) to the form p/ , and then let us inte-

grate the expression for dt from 0 to 4 (from-the pericenter to
the arbitrary points):

-tt P-y (4+ec2s) (6.6)
o (4 + e cos q)

where t is the moment of transiting of the pericenter.

Problem 6.8. From the integral formula (6.6) and the
relations of elliptical motion, by using the substitution

(see problem 2.1), derive Kepler's equation for an elliptical
trajectory.

Solution. Based on the formula p.a(1-e2 ) I, the integral
formula can be written as:

a32 (l-e2p)-Y/2 d (6.6')
jT (1 + e cos ()

Then, by means of the substitution indicated in the condition of
the problem, we can convert to the variable of integration E
(eccentric anomaly). To do this, we must differentiate the
expression obtained by substitution, after which we have

see1 seca
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Further, using the relation secI 2-tg+ ,
' e  /62

we find the expression

d .- -e dE

Employing the formulas

cos = (l+cosE), and s ( -cosE)

we can write

d y +e E ( -e)-E edE
_ +e i -ecosE -ecosE

We can also express the integrand by E, by employing the
relations of elliptical motion

r= a(I- e cosE) jand r cos (=az (cosE -e)

I -e+
(see problem 2.1): (+eco s= 1-ecosE

Finally, the integral becomes

_3_/_e2)_ ( I-ecosE 3/
__ = _ _ _e,_ -dE=- ( E -esin E). (6.7)

Using the formula n=qVa-2  we get Kepler's equation that we

already derived in problem 2.1 by another method:

E-esin.E ' n(t-t.)=-..

This expression served in the determination of the time of motion
in an elliptical trajectory. It can also be solved for E for
known t. In this case Kepler's equation is solved by the method
of iterations.

Remark. We can similarly obtain Kepler's equation for a
hyperbolic trajectory by using the analog of the eccentric anomaly
H = iE, which has real values. The corresponding formulas when
e > 1 are of the form
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r cos c =jai (e - ch H), r = jaJ (e claH -1),

eshH-H = n(t - t,) a la 3 (t- t.)

Problem 6.9. A spacecraft is flying to the Moon in an ellip-
tical geocentric trajectory tangent to the lunar orbit at its
apogee k (Fig. 9). Determine the time of flight of the craft /63

by the apogee of the lunar ' 1t a.((orbit I). Solve the problem

for the case when the flight is made at the perigee of the lunar
orbit ,, (orbit II).if the perigee and apogee distances of the

Moon are r., = 363,300 km and ra4\ = 405,500 km, respectively.

Solution I. In problem 5.20 we determined the major semi-
axes of the transfer orbits I and II, aI = 206,000 km and all =

185,000 km.

Now let us write Kepler's-third law (6.5) for geocentric
motion.:

S ~X _ 398600 iO' km
T2  T ]-  -(3 4i3) 4) =  2

whence the total periods of revolution in orbits I and II are

T - *1.0 -8 65o =

=g.30-_10.c 0O.76days= lOhys f8.2 hr

= _ a 0 _ (1.85-10) . 0
I .Oii.4 - f 01-04 -

S?7,9 - O1sec 9.16days= gda; 03.Shr

The half-periods we seek are, respectively: TI = 5.38 days =

= 5 days 09.2 hours, TII = 4.58 days = 4 days 13.9 hours.

Solution II. The quantities TI and TII can be obtained

directly from Kepler's equation (6.7), by substituting instead
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of E its value E = 7:

.=0,498 0 = 0,4 8 0-9 10 .40"0

= 4,66-10 sec = 5,3$days= 5daysOge2 hr

5

I'I - Q*498. c 0- 0.498 Q0.1 *g8 0-i

S3,97. 10sec= 4,58days 4t das 3.9hr

Problem 6.10. A spacecraft moving in an Earth orbit is given
an additional velocity impulse at point A bringing it into a trans-
fer heliocentric elliptical orbit I tangent to the orbit of Mars
at point B (Fig. 13). Determine the flight time to Mars' orbit.
Solve the problem for the case of flight to Venus' orbit (orbit II).
The orbits of the planets are assumed to be circular with radii

r = 150'106 km, r 1= 228'106 km, and r 2 = 108"106 km.

Solution. The point of tangency
S of the orbits B is the aphelion

of orbit I, and the point of
tangency C is the perihelion of
orbit II, since at the points of

tangency the vector of the orbital
S -C A velocity is perpendicular to the

radius of the circle of the orbit.
'B Let us determine the semi-major

3eacm axes of the transfer orbits:

Fig. 13 ar (r+r,) = 89. f ,
Key: 1. Venus' orbit

2. Earth's orbit a = (r+r) 29 m.

3. Mars' orbit

Knowing that the period of revolution of the Earth around
the Sun is 365.26 z 365.3 days, let us use Kepler's third law:

rI, = 365.3 4 r~ 7 , whence T,= 365.3 "'- =5,)5.1 days,
T = 365,3 (g)= 291.2 i days,
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so that the flight time to the orbits of Mars and Venus in an
elliptical trajectory is T I = 257.6 days and TII = 146.0 days.

Problem 6.11. A spacecraft will move in a geocentric trajec-
tory transecting the Moon's orbit (Fig. 14). The insertion into /65
orbit occurs at the altitude H = 230 km at a horizontal initial
velocity v0 = 10.95 km/sec. Considering that the Moon will move

in a circular orbit with radius r I= 384,400 km, determine the

flight time to the Moon's orbit.

Solution. A comparison of
the initial launch velocity v =

Uop6ma = 10.95 km/sec with a local para-
bolic velocity at the launch point

Vl.par 1 10.99 km/sec

al (see also problem 5.20) enables
us to conclude that the flight
occurs in a strongly elongated

Fig.14 elliptical.orbit, since the launch

Key: 1. Moon's orbit velocity does not exceed the para-
bolic velocity, but slightly
differs from it. Let us determine

the semi-major axis of the transfer orbit from the integral of
energy written for the perigee (the launch is horizontal):

Hence from the given v0 = v and H = H , we find a = 450,000 km.

Let us determine the orbital eccentricity by the formula r =

= a (1 - e), whence we have

e = - r=/ I - 9

Thus, the ship executes the flight in a strongly elongated geo- /66
centric elliptical orbit I, whose center C, as we can easily
determine, lies beyond the Moon's orbit (Fig. 14). The time of
motion in the arc of the trajectory wTA of interest to us (from
the perigee to the point of intersection with the Moon's orbit)
can be found from Kepler's equation (6.7):

(E -esin).
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We can determine the eccentric anomaly of the point of intersection
E in advance from the equality r = a (1 - 3 cos E) = 384,400 km,
whence

a-r 450,000 - 384,400
cosE = - = 450P00 0.985 0,48 ,

sn E -0.989 , E =4.422 =810 29'.

Substituting these quantities into Kepler's equation, we have

(450,000)3 /2
- =( (1.422 -0,985-0.989) = 2,410 / sec =

1398,600

=59,4hr = 2,46 days.

Remark. We can consider as the point of intersection also
the point B, for which when cos E = 0.146, EB = 278024 ' , andB 'B
sin EB = -0.989, so that

(450,000) fs
z = 7 8 (f,422+0,.85-0,989)= 11f.47?-OS'/ see =

= 3 18. 6hr = 3 .3i days.

Problem 6.12. Solve problem 6.11 by assuming that the /67
initial velocity v0 = 12.00 km/sec.

Solution. By comparing the given initial velocity with the
local parabolic velocity vl.par = 10.99 km/sec, let us conclude

that since v0 > Vl.par, hyperbola II is the flight trajectory

(Fig. 14). By writing the integral of energy for the hyperbola
(see problem 5.5)

V( = (4/Ia),

let .us calculate the semi-major axis:

IlM = I?,I?0= 2.7 R'a.
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From the relation r=lal(e-i);, we get the eccentricity

_r + 600
elal m177 = +1 =1,384.

To determine the flight time to the Moon's orbit T, let us
use the formulas of hyperbolic motion obtained in problem 6.8:

r =-Il (e ch H - 1),
e skH- ja- -3/2e siP) -H =V/lal (t-t, )

(Kepler's equation), which in our case can be written as:

r -Ial (echH-f) = 384,400 km,
t t- (e sk H - H).-

From the first relation we find

e ch, H = 384400o + = 22,40+= 235.40,
17, +70

ch H= 2340 =16., shH= sh,2 H-1 =16.88,1.3 84 H

e skH = 25.36, H= 3.52 = 20141',

which, on being substituted into the second, allow us to determine

= O (23,36 - 3.52)= 3,56-10 (9.84= /A 9 Z 8,600

7.06 1lsec = 19,6 hr.

Problem 6.13. Derive the approximate formula for the flight /68
time in an elliptical trajectory as a function of true anomaly
(polar angle) for small eccentricities.

Solution. Let us use Eq. (6.6') (see problem 6.8) derived
for the elliptical trajectories:
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VT &/2( -e2)/i d2
j0- 0 (I +e cos

Let us expand the integrand in a series in powers of eccentricity
e. Limiting ourselves to the first power of e, we get

a sh
- (6.8)

Since the mean velocity =2x/T =Vi -/, I we have

r(q-2esn ), (6.9)

Problem 6.14. A spacecraft satellite inserted into Earth
orbit has a perigee altitude H = 180 km and an apogee altitude

Ha = 340 km. The moment the ship transits the perigee t = 9 hr
00 min. In the next revolution it is required to fire the retro-
engine at the moment when the true anomaly of the craft p = 2700.
Determine the semi-major axisof the orbit of the spacecraft a,
its eccentricity e, the period of revolution of the craft T, and
the moment of firing the retro-engine t*.

Solution. From the given altitudes H and H let us find
a, r , and e:

a = R +-(H,+H,,)=6630 km, rx=R, +H,=6550 km,

but r, = a(f-e), whence e =- = 8 0.012.

From Kepler's third law written in the form of Eq. (6.3') (see
problem 6.1), let us determine T:

- 8n 3/2 [ 66503/2

T= 84.4 (63 84.4 V-6-,7 689.5 mini

Considering that the eccentricity (e = 0.012) is quite small,
let us assume that the approximate formula of the flight time (6.9)
obtained in problem 6.13: /69

72- ( -2e sinq),
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whence we get for the time of flight from the perigee to the instant
the retro-engine is fired ( = 3/2 7):

. 9,5* - o2 + 0.024)=66.7 min.

Let us determine the moment of firing the retro-engine:

t* = t + T = 9 hr 00 min + 66.7 min = 10 hr 06.7 min.

Problem 6.15. From the integral formula (6.6) (see problem
6.8) and the relations of parabolic motion, derive the formula of

flight time in a parabolic trajectory from the pericenter f to

the point A with given polar coordinates rA and A (Fig. 11).

Solution. For a parabola e = 1, therefore the integral
formula (6.6) can be rewritten in the simplified form:

- J (+cos~2 4q2 cos "

Using the relation

I/Co2 _ + tga ,

let us write

3/2 / 9 10- q2y 3/2 tg 2 fA

N g,-o + d! ')w 9
0

Thus, T can easily be expressed not only as a function of A,' but

also as a function of rA, for which let us use the equation of the

= P = -( 2)y
I +cose 2

whence
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We finally get

22r;- T ( r +P)
(r r + -(6.10)

In this formula parameter p can be replaced by its value p = 2r ,

characterizing the parabolic trajectory, so that

C-(rA)= ( 7Jr) (r +2r). (6.10')

Problem 6.16. A rocket at an altitude H = 230 km above the /70

Earth's surface is given a horizontal parabolic velocity. Deter-
mine the flight time over a distance equal to the mean radius of
the Moon's orbit 1 I = 384,400 km.

Solution. Let us use Eq. (6.10'), by setting r =

384.,400 km, 'r R + H/ = 6600 km:

=2(384400-6600) 5(3840000)(38400+400)= 1.82'10 sec = 50.6 hr.

It is of interest to compare this result with the results of
problem 6.11 and 6.12: flight in an elliptical trajectory takes
59.4 hours, while it takes 19.6 hours in a hyperbolic trajectory.
The solution for the problem of flight in the parabolic trajec-
tory is simpler, since it does not require the integral of
energy. For this reason, we need not use the parabolic velocity
in calculations. The local parabolic velocity for the altitude
H = 230 km was already determined in problem 5.20 (v = 10.99
km/sec).
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CHAPTER SEVEN /70

CONDITIONS FOR THE EXISTENCE OF ELLIPTICAL TRAJECTORIES

Among the elliptical trajectories, in which the main condi-
tions for existence is the velocity constraints

l.ci < v l.par (7.1)

we will distinguish two classes of trajectories -- flyby and
ballistic. For a body launched from the Earth's surface (rO = R )

to describe about it a closed elliptical curve (0 < e < 1), that
is, to enter a flyby trajectory, the flyby condition

r > r 0 = R (7.2)

must 'be satisfied (the case of a "zero" satellite when r = r0 =

R ,v = VI, and e = 0 is not considered by us here, although

it also can be included in the class of flyby trajectories). For
a launch from altitude H above the Earth's surface these conditions
(the circular orbit is included) become

Vl.ci < v < vl.par, (7.1')

r > r0 . (7.2')

In addition to these obvious and necessary flyby conditions, there
are yet a number of other conditions that will be established in
the following problems.

An elliptical trajectory which often occurs within the Earth
(r < R ) and motion along it is possible only outside it, that is,
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where r , R , is called a ballistic trajectory. Below we will /71

establish the criteria that enable us to determine whether a
trajectory belongs to a particular class of elliptical trajectories.

Problem 7.1. Show that for a flyby to be feasible, in addi-
tion to satisfying condition (7.1) and (7.2), it is necessary that
the launch point at the Earth's surface be the perigee of the orbit
and the velocity at this point be directed horizontally.

Solution. This condition follows directly from condition
(7.2), since if the launch point is at the surface of the Earth,
for a flyby trajectory tangent to the Earth at the launch point
this point can be nowhere else except the perigee. In Section 3.5
it was shown that the orbital velocity at the perigee.,and apogee
is perpendicular to the radius-vector, so that the launch velocity
in this case must be horizontal.

However, this statement can be proven more rigorously.
Actually, the equation of a conic section p/(l+ecosq)>p/(4iecos

corresponds to the flyby condition (7.2). When 4 is varied from
0 to 7 this conditions means that 4 > 40. The lat.ter is possible

only when q = 0 (the launch point coincides with the perigee).

Now let us show that when the launch point coincides with

the perigee do= 1 . o =0,% (Fig. 15), where ko= (o

and Po 2 is the angle of V0 with the local horizon.

Let us use Eqs. (4.14) .and (4.15) (see problem 4.10) written for

OO_! _

# 2

C n -Le cos o

Knowing that F =-gR

(see problem 4.7) and

Fig. 15
c - J gix 07"j =R6 osotin

(see problem 3.4), we can write /72
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R, v, stn, oL __, . _ - v, Sin2a ct Cao 1

e ;' sir =- Rb gR

R sirL'c 0  V SinM , -

e cos c 0  = R

When ¢0 ='f, Eqs. (7.3) can be reduced to the following expressions:

siT doctgd,= 0R (7.4)

For both equations (7.4) to be satisfied, ctg a0 must be

equal to zero, since sin a0 cannot tend to zero by virtue of the

condition 0 < e < 1. Therefore, a = + i/2, and B0 = 0, ff, and

this means that the launch is horizontal.

Thus, for a flyby to be possible from a launch from the Earth's
surface simultaneously three conditions must be satisfied:

v .ci < v0 < Vl.par; (0=0; -a IO0,S./ (7.5)

If ac' Tr/2, for any initial velocity the body launched from
the Earth's surface cannot be inserted into flyby trajectory. In
this case only a ballistic trajectory can obtain.

When a body is launched from altitude H above the Earth's
surface, satisfying condition (7.5) as before ensures a flyby,
however they are not mandatory for its execution. This means that
the insertion into orbit can be made at an arbitrary point of the
orbit, which is neither at the perigee or the apogee. The latter
fact presupposes violation of the condition that the velocity v 0
is horizontal.

Problem 7.2. A satellite is inserted into elliptical orbit
at altitude H above the Earth's surface with velocity v 0 directed

horizontally (along the tangent to the circle drawn through the
launch point from the Earth's center). For the satellite to move /73
around the Earth for an extended time it must not approach its
surface more closely than the distance h(h < H). What must the
launch velocity v 0 be to ensure this condition?
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Solution I. From the condition of the problem it follows
that if the launch velocity is directed horizontally, the launch
point at altitude H can only be the orbital apogee

(r_,=rd = Ra + H)

since the satellite can attain a lower altitude (h < H). The
constraing h < H means that the perigee distance r must obey the
condition

r, -=r >R +h.

Let us write the formula of the launch velocity v0 = v

analogously to (5.16) (see problem 5.19):

Sa 7 r. 2 R +H

r= = ( R+H? )
x2 H R8+H
X iH+ 7 rT A H .+H ' "

Let us evaluate the expression in the parentheses, beginning with

the constraints r >,Ra + , and Ra +H+r > 2Ra + H+h

Ra+H Rs+H
R, + H+ r, 2 Ra +H+/k

Therefore,

S (+H- 2Ra+H+h)
and

Uo0 = 2R8+H+h R+H

The problem always has a solution, since the radicand is
always positive.

Solution II. The problem does have a simpler solution.

Let us write the integral of energy for the apogee and the
perigee:
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_ _ = 2
_R +H Ra+h

whence /74
2 H-h

. - 2F& (R8+ H)(Ra + ) .

R, +
Let us replace v by its value ViRh V, i deriving

from the integral of areas, after which we get

O2p(H-h)(R+h) R +h A 2 R++
= =(Rs+H) (Ra+H)T (R,+hY] p Ra+H 2RRH +H

This then is the expression of velocity v 0 = va required for the

perigee altitude to exactly equal h. In order for this altitude
not to be less than the given value h, it is necessary that

=2 R +u 2R, +H+1 (7.6)

Problem 7.3. A rocket is
a h launched at an arbitrary angle a0

O vo to the vertical at the Earth's
surface. Find the minimum initial

SMelaunch velocity v 0 required for

A the maximum separation of the
rocket from the Earth's surface
r to be equal to the assigned

distance d (Fig. 16). Determine

Fig. 16 the semi-major axis a and the
eccentricity e of the corresponding
elliptical orbit as a function of
angle a0.

Solution. As follows from the solution to problem 7.1, the
trajectory cannot be a flyby trajectory since when the rocket is
launched from the Earth's surface at point A the flyby is feasible
only in the particular case when a = ± 7/2. In this case motion
occurs in a ballistic trajectory, more accurately, along the arc
AaB, (the arc BfA lies within the Earth).
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Let us write the integral of energy for the launch point A
and the apogee a:

S R a d0

Simultaneously, from the integral of energies we have /75

C - Psy, = IIc R v dv.,

V. = d o sric t 0

Substituting the value v we have obtained into the integral of

energy, we get

so that the desired launch velocity is

2 Zd (d-R6)
oV = R (da- R2 sinLT'a (7.7)

Let us determine the semi-major axis of the ballistic trajectory

a from the integral of energy o,-( C- ) so that

a a- d b (7.7')
2 )a - VR 2(d - R. sia) •  (7.7)

We can find the eccentricity from the apogee distance .d La(f+e),I
from whence

d- _ d -Lr 2d -Rc a (2-R)
a a Si, d2R, -_

We can easily see that from the resulting formulas for a = + /2,
the formulas we already obtained in problem 5.19 for 'the flyby
trajectory follow as a particular case:
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o =Va R (d + R) r(r, + ~) a r,

Problem 7.4. A material point moving according to the law of /76
universal gravity is at the position M0 at the initial moment

(Fig. 16), at the distance r0 = R + H from the Earth's center

and has the velocity v 0 . The angle between the velocity center

v0 and the line of the local horizon is B0, and the polar angle

of -the p6int M0 (true anomaly) is c0. Determine the eccentricity

of the elliptical orbit and establish the dependence of angles

#0 and B0 . Is it possible from these problem conditions to

determine whether the trajectory is a flyby or ballistic trajectory?

Solution. To find the eccentricity, let us use the general
formula

e= (7.8)

where

c=r v0 sin(oio)=r vocosp,, r=o-2 -' (7.8')

so that from the assigned r0, v0, and 80 we can uniquely determine

c, h, and e.

To establish the relation between the angles 0 and 80' let

us use relations (7.3), writing them in our case as

2 2 cos / v COSe sLr " rUo r2 gcosos r r

r vof cos2 fo0 - _ vi cosF -,
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where gH is the acceleration due to gravity at altitude H (see

problem 1.6). Dividing the first equation by the second, we get

S 2 p tg =p tg P.
9 COS 0-s o Hf- 0 ) COS o

Transforming the denominator of the resulting fraction by means
of the relations

2 Ca C
a  

2 C
V° °=r-- T' rP 9H' (7.9) /77

we find

tg'p F tgqp
t __ ° I- r " 1 (7.10)

The orbital parameter p - c /P can be assumed known since

from (7.8') we know the constant of areas. Since the eccentricity
then can be assumed known, then consequently we also know the semi-
axis a. If angle 0 had not been given in the conditions, Eq.

(7.10) could serve for its. determination from the known 80, r 0 ,
a, and e.

We can at once from the problem conditions establish whether
the trajectory is a flyby or ballistic trajectory. To do this,
it is sufficient to find the perogee distance rmin = r = c (1 - e)

and to compare it with the Earth's radius, by verifying condition
(7.1).

Problem 7.5. At which point of the ballistic trajectory
does the angle of trajectory inclination to the local axis (plane
perpendicular to the radius-vector) reach its largest value?

Solution. Let us use the results of problem 7.4. Let M 0
(Fig. 16) be an arbitrary point on an elliptical orbit. We will
denote angle 80 by B, bearing in mind the arbitrary point on the

orbit. Eq. (7.10) is valid for any point on the orbit:
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Let us set up derivative -d- and equate it equal to zero:d'e

d i -e 2 - ecos -
d eSLTq (+e cos )2  o

1 + e cos (cq

whence we get cos ¢ = - e for e X 0. Corresponding to this condi-
tion is the radius-vector

r=p/4 + e coscq = a(I-e 2)/4-e = .

However, in problem 5.11 it was shown that the conditions cos ¢ =
= - e and r = a are satisfied only for two points on the ellipse
B and B' situated at the end points of the semi-minor axis
(see Fig. 7), that is, when E = +± 7r/2.

Problem 7.6. At the moment the spacecraft separates from
the last rocket stage, it is at point M 0 (Fig. 16) situated at /78

altitude H = 200 km from the Earth's surface, and has an initial
velocity v0 = 8.50 km/sec, where the vector v 0 makes an angle of

0 = 100.00' with the line of the local horizon. Calculate the

constant of areas with the craft trajectory c, constant of energy
h, eccentricity e, trajectory parameter p, polar angle of launch
point 0, semi-major axis a, and perigee and apogee distances

r and r . Determine from the data obtained whether the trajec-

tory is a flyby or ballistic trajectory.

Solution. Let us use formulas from problem 7.4 for the
calculations.

Let us determine the constant of areas by the formula

c = r, v. cosp, (Ra + H) 'ocos p=
=(6370+200) 8,50. 0,985 =155,000 km2/sec.

We calculate the constant of energy h by the formula

= 1.50)2 2-9,00 km2

sec

We find the eccentricity from (7.8)

e = +- 491 026.
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Parameter p, according to (7.9) is

-
c  55000 = 759 km.P= a 398600

Determine the polar angle by Eq. (7.10):

o= o 0.76 0.476 = 4.310, J =52038 ,
o e 6570 0.434
P 7590

where we can verify 40 by using Eq. (4.17):

c - 55,000 8.50 a 01

- (5 5 00 ) - 398,6006570

Let us compute the semi-major axis in terms of parameter p:

a=-- -- 7 =85950 km, ?79
-e 2  1 -0.06o9 3 8450: kin,

and let us find the distances r and r from a and e:

r. = L(1-e) = 8450 (-0.263)= 6 000 km,
r = ((4 +e) = 8(50(4 +0.263)= ~0,300 km.

Since the r proves to be smaller than R , obviously the

ballistic is.a trajectory one. The flyby is impossible for the
given initial conditions.

Problem 7.7. A rocket at a distance r0 from the Earth's

center is given (r0 * R+) some initial velocity v0 directed at
0

an angle B0 to the horizon. What must this velocity be for the

radius-vector of the perigee to be equal to the given value
r (r <r 0)?

Solution. As follows from the problem condition, the launch
point M0 (Fig. 16)'is neither the perigee nor the apogee of the
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orbit. Let us write the integral of areas for the launch point
M 0 and the perigee f:

c=l~ l vI = rTvoCOSPo = r u,.

Here

Writing the integral of areas

V L r- o ', -2 . /r

for these same two points, in it we substitute the value of v :

2 2 = t' rVr

Sr v, cosppo

whence

and

Vo= r NC2- >0
ro r () o " (7.11)

For the problem to have a solution, the inequality -o cosp~ >, /80

must be satisfied, whence

CosP, > 0 (7.12)

so that we can determine from the given 0, r , and ro whether

the assigned distance r has been attained.

Eqs. (7.11) and (7.12) enable us to investigate both classes
of elliptical trajectories for which r >, R (flyby) or r < Rt
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(ballistic). Upon inspection of the flyby trajectories we can
assign not r0 and r , but the launch altitude and the perigee

altitude H and h . In this case (7.11) becomes

2 (H -h,)

= (R+H)(R,+) t( )os)P- j (7.13)

where cosPo>(Ra+ h)/ +H so:that actually we determine what

velocity must be imparted to the rocket at altitude H for the
altitude of its orbital perigee to be equal to the given altitude
h

We can easily see that from (7.13) as a particular example
Eq. (7.6) follows, obtained for the velocity in horizontal launch.
Actually, when B0 = 0 we have again

V (Ro + H)[(R6+H)- (RS +h.)2 J 2 R+H+h,(7i +H

Problem 7.8. Under which initial conditions will the trajec-
tory of a spacecraft launched at altitude H from the surface of a
planet with radius R not intersect its surface?

Solution. We can consider this problem as a particular prob-
lem of the preceding one, with r = R (h = 0) (the tangency is

included in the case of flyby). By Eq. (7.11) we could easily
establish the limiting velocity at which intersection will not
occur, that is-, in which flyby is observed:

S 2I (r.-R) / 2pRH
lim rR[(.)cos'. -] [ (R+H)(R+H)co -RJ i (7.13')

so that when v 0 > vlim, we get the flyby trajectory (the case /81

v0 = vlim gives the case of tangency). This condition can be

represented as:

v 0 > Vl.par (R+H) 2co so - R = vl.ci V(R+H) cOS 2 p-R- ' (7.13")
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where R+H and v = are thee .ci 1.par 1.ci

local circular and local parabolic velocities at the launch point.

Now let us look at the conditions imposed on angle 80 (with

local horizon) or angle a0 (with the local vertical) (Fig. 16).

Obviously, the problem of determining velocity has a solution if

the condition (R+H)cos2 o - R' > ' is observed, where (R+H)cosp 0 >R,
or

(R +H) sin co > R. (7.14)

From the geometrical point of view, this condition means
that the velocity vector v0 must be directed outside a cone

described'around a planet and
with its vertex at the launch
point M 0 (Fig. 17), so that the

A- angle of the semi-aperture of the
cone 0 = 1800 - a0 is a function

0 of the launch point altitude above
ci the surface of the planet H.

S Mo . Actually, from the right triangle

MOCA we have

R= (R+H)sirL (180 -

Fig. 17 -co,)=(R +H) s d,

(7.15)
=(R+H) cosp/

therefore, if the velocity vector v 0 1 is directed along the cone

generatrix, the problem has no solution. For any other vector
v02 directed outside the cone, from the relation of the sides of

AMoCB it is clear that the leg CB = (R + H) sin c 0 2 = (R + H) /82

cos 802 is larger than the radius of planet R, so that the

condition is satisfied. Condition (7.14) and (7.15) are identical
to condition (7.12).

89



CHAPTER EIGHT /82

TRANSFER FROM ORBIT TO ORBIT

If at a point with orbital velocity v an addition velocity
impulse u of arbitrary direction is applied, the point acquires
the velocity v + u and passes into a new orbit. Here the impulse
u must be specified in magnitude anddirection. We will relate
the direction of the radial impulse u with thepositive direction
of the unit radius-vector r 0 and assume that u = uro. Here we
will regard the impulse u as positive if u > 0, and negative if
u < 0. We will associate the tangential impulse u with the posi-
tive direction of the tangent to the orbit T0 (directed toward
the side of motion) and we will assume that u = uTr (rule of
selection of the sign of u is the same as for the radial impulse).
In the case of a tangential impulse, the geometrical addition of
velocities is replaced by the algebraic.

Problem 8.1. A satellite is moving in a circular Earth orbit
r0 with circular velocity vci. Determine the radial velocity

impulse u as a result of whose application the satellite passes
into an elliptical orbit with assigned perigee distance r

Solution. Let us look at the positive and negative impulses
(Figs...18 and 19). In both cases the applied impulse u is perpen-
dicular to V ci therefore the resultant velocities, even for their /83

different directions, will be the same: v = /v2 . + u 2 . Therefore,ci

in both cases the direction of velocity is positive (/v2 . + u >
ci

> v ci) and the satellite passes into an elliptical orbit with

semi-major axis a > r0. The orientation of the orbital line of

apsides depends entirely on the direction of u.

To determine the velocity at the perigee of the new orbit w,
let us write the integral of areas for two points on this orbit --
-- perigee T and the launch point MO:
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l i nap 1Kp 2

1 1,

SI D

hC r1 o f 1

Fig. 18 Fig. 19
Key: 1. v ci Key: 1. vpa r

2. vpar 2. vci

3. vci 3. vci

rx + , = Fx r, . = r, S ,. /83

From vector geometry it follows that sin a0 = v ./v, so that we
have

r 0

v =v. . (8.1)
7T vi r

We can reach the same relation by assuming that the launch point
belongs simultaneously to both orbits, as a result of which the
constants of the areas of these orbits are

S= r x v = and =V = x i , and =
ci

Let us write the integral of energy for these two points:

x c  ' Cv i-, ="(8.2)
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Canceling out l.+/a by means of the relation
0

pa_ 2L6  a .ro\ 2
a= - C (8.3)

we get for u2

L 2  p6 2± ' 2 v 2r ]
r0  - r c r5 J

Replacing vi by its value +/rO, let us find
o

rU rs rl

so that

or

Finally, for the desired impulse we have /84

u = + l.ci (84)

or

u = + vci (8.41)

where vl.ci =/R is the familiar local circular velocity at

the perigee of the new orbit.

Since the expression in the parentheses is positive (r0 > r ),

the sign in front of it corresponds to the sign of impulse u.

Thus, the given distance r can be attained for both direc-

tions of the radial impulse vector. The orientation of the
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elliptical orbit here differs. We can easily see that in the
limiting case for the impulse lul = Vci (vci > 0) parabolas A

cwith mutually
and B are formed (v = v +u = v . = v ) with mutuallyci ci par
opposite direction of focal axes.

Interestingly, according to Eq. (8.3) the length of the semi-
major axis of the new elliptical orbit does not depend. on the
direction of the impulse (for its fixed value). Thus, both new
elliptical orbits (see Figs. 18 and 19) have identical semi-axes
and eccentricities (for equal r ), although the orientations

differ. Correspondingly, the periods of revolution of the
satellites in these orbits are also the same.(see problem 8.2).

Problem 8.2. The satellite moves in a near-Earth circular
orbit with radius r0 , making one revolution in the time T. As a

result of a radial velocity impulse u being applied, it passes
over into an elliptical orbit. Determine the period of revolution
of the satellite Tlin the elliptical orbit.'

Solution. In problem 8.1 it was shown that the length of the
semi-major axis of an elliptical orbit <a formed due to the appli-
cation of the radial velocity impulse and, therefore, the period
of revolution T1 , do not depend on the direction of impulse u:

for a fixed impulse u these quantities prove to be equal both for
the positive and negative impulses (see Figs. 18 and 19). The value
of a can be determined from the integral of energy using the second
formula of (8.2):

2 2 +u= + u - /85ci

whence

s R -ru -r u/ ' (8.5)

alu=o= r,

Assuming a to be known, let us use Kepler's third law:
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whence

T,- T(I- u') . (8.6)

For the satellite of a planet or star whose gravitational para-
meter p is unknown, by means of the relations of circular motion
we can cancel outfr 0//p from Eq. (8.6), then we have

ci To ) I 5

so that

- 2] (8.7)

Problem 8.3. The problem conditions are the same as in
problems 8.1 and 8.2. Determine how variation in impulse u with
any sign influences the orientation of the focal axis of an
ellipse relative to the fixed direction at the launch point M,
that is., establish a relation between u and the true anomaly
(polar angle) q of the launch point.

Solution. As follows from geometrical relations (Figs. 18
and 19), variation in impulse u influences the direction of v,
and therefore, the change in the angle a0 = arcctg u/vci* In

problem 7.4 we established the formula '(7.10) relating angle 0

with the angle B0 = /2 -a0 (angle with the horizon): /86

R tg o ctga 0

As we can readily see, the parameter of the elliptical orbit is
equal to the parameter of the initial circular orbit, since
parameter p is defined by the formula p = c2 /p, and the constant
of areas c, as indicated in problem 8.1, is the same for both
orbits, namely:

C = r, vci r. v st do= roi fitu2 siJ O,
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where V

so that

- .o - r .

This value of parameter 3 could have been obtained at once by
the formula p = a (l - e ) for the circular orbit when a = r0,

and e = 0. The value of the parameter p = r0 
= a (1 - e2 ) is

retained also for the entire family of elliptical trajectories
corresponding to the set of values lul < vci. In this case the

orbital elements a and e of each ellipse differ.

Thus, assuming p to be known, we get tg c0 co , that is,

90 in general does not depend on u, and thus, does not depend on

v, and here we have a fixed value 0 = r/2, or 0 = 3r/2. The

first value of 0 (see Fig. 18) corresponds to u > 0, and the

second (see Fig. 19) -- u < 0. This means that the perigee of
any elliptical orbit corresponding to a radial impulse with specific
sign is situated at a fixed angular distance from M0 . When the sign

of u is changed, the direction Earth center - perigee is reversed.
The directions of the focal axes of the orbits coincide here for
u with any sign.

A variation in the elements of the orbital family can be
determined by Eqs. (8.5) for a and from p = a (1 - e2 ) for e:

=I- " -(ci
e 2i--=-=I u1 > 6

Hence it is clear that a and e depend not on the sign of u, since /87

u2 or Jul appears in the formulas, but only on its value. As u
is increased, we observe a and e to increase. As a result, there
is a lowering of the perigee, which is evident from the formula
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Two parabolas formed when Jul = v ci so that v = vci = Vpar

are the limiting case of elliptical trajectories (except for the
case of initial circle). The formulas for a and e in the particular
cases. (u = 0 and lul = v ci) correspond to a circle (a = r 0 and

e = 0) and a parabola (a -+ , e - 1). The perigee distances of

both parabolas are the same: r =~p=f r. Thus, by specifying

a set of radial impulses Jul < vci , we observe a gradual evolution

of the trajectories from the parabola A to parabola B, that is,
an evolution of parabola A - ellipse - circle - ellipse - parabola B.

Problem 8.4. A satellite
moves in an elliptical Earth orbit

-I (Fig. 20) with specified radius-
vectors of perigee r and apogee

r . Determine the tangential

7a' velocity impulse u plight of the
Sperigee for which the apogee alti-
t(m) tude is increased by a given

amount H.

Solution. The apogee alti-
Fig. 20 tude can be increased only by

applying at the perigee a positive
velocity impulse u = uT 0 (u > 0),

during which the orbital velocity v = v + u (v = v + u). Here

the perigee of orbit I is the perigee also of the new orbit II,
and the semi-major axis aI = 1/2 (r +,r ) is increased to aII =

= 1/2 (r + r + H). This occurs due to an increase in the orbital
2

velocity and follows directly from the integral of energy v = +
(2/r - 1/aI ). o

From the integrals of energy written for the perigees of both
orbits we have

4's Il - r21k 2) , /88V -r. V ra r, + T)

v + ,2- a~---+-- -_,/2 _ 2 U ___+_)_ _
xa,, F. r,+r. H -+(r,+r+ 4 )-. ' (8.8)

whence

u + r X M (8.9)
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When the apogee altitude is reduced by the altitude H (see
orbit. III in Fig. 20), we must bear in mind that the negative
impulse u (u < 0) is directed opposite to v , so that there is a

reduction in the perigee velocity from v to v = v + u < v .

The perigees of orbits I and III coincide, and the value: of the
semi-axis aI = 1/2 (r + ra) drops to the value aIII = 1/2 (r +
+ r - H). We get the formula of the corresponding impulse by

replacing H in Eq. (8.9) by (-H):

V r r+r.-H V+r. (8.9?)

Problem 8.5. A spacecraft is moving in an Earth orbit
6

(r = 150'10 km) with circular heliocentric velocity vci = 29.78

km/sec. What tangential velocity impulse must be imparted to this
craft for its new orbit at its aphelion to be tangent to the

circular orbit of Mars (rl = 228'106 km). Determine the same for

the case of light to Venus (r2 = 108.106 km) (Fig. 13).

Solution I. Let us use the formulas of the preceding problem,
by writing it in general form for p = p and r = r = r :

where 1_ vci = vpar = 42.11 km/sec. For the case of flight to

the orbit of Mars,

r, > u (I) >0, H r- , u 42.i r +t-

- )42.1 , 4 21 (V =,2, 28=2.95 km/ s e e ,  /89

and for the case of flight to the orbit of Venus

r,<r, u(1i)<O, H=r-r,, u 42,11ir-H

4-2.11(J Z = 42.11 - ) = -2.53 km/sec.
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After tangency to.the orbit of'Mars or Venus,. the spacecraft will
continue to move in an elliptical trajectory, returning to the
point of impulse application. The transfer to the orbit of Mars
or Venus is possible only when an.additional impulse is applied
at the point of tangency.

Solution II. Let us write a series of formulas characterizing
the transfer of the spacecraft from one elliptical orbit into
another. The integral of energy is of the form

=)I ( - =v. (2- (8.10)

If it is assumed that the craft, traveling at velocity v 0,
acquires this velocity by an additional tangential impulse
u (v = v0 + u) being imparted to it, then

W= V-VO= Ci2 -o, (8.11)

where a is the semi-major axis of the new orbit. In particular,
if the initial orbit were circular, v0 = vci and the corresponding
impulse would be

u= v~/ r - (8.11')

If velocity v is assumed to be equal to the velocity of the craft
before application of the impulse as the result of which it
acquires the final velocity vfin = v + u, then we have

u = vfin - v = vfin - (8.12)
fin fin c sa

where a is the semi-major axis of the initial orbit. For the /90
final circular orbit with vfin = vci we have

u = v( v -(8.12')

For Mars, r/a = 3/3.78 = 0.794, u = 29.78 (V2 - 0.794 - I =
= 2.95 km/sec. For Venus, r/a = 3/2.58 = 0.860, u = 29.78 x (I -
- 2 - 0.860) = - 2.53 km/sec.
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Problem 8.6. A satellite is moving in a circular orbit with
radius r,.making one revolution in the time T. When a tangential
velocity impulse u is applied, it passes into an elliptical orbit.
Determine the period of revolution T 1.

Solution. Let us derive the formula for the period of
revolution :in the elliptical orbit for a tangential impulse in

and direction. Based on Kepler's third law T2 2= r3/ and

and the integral of energy, we have

2 - and T1 a( -_ )32 2 - - "
Vci Vci

With the tangential impulse v 2 = (vci + u) (u with any sign)

where vci = 2Jr/T, so that

T, T .uT UT 2]-5/2

Calculate the flight time to the orbits of Mars and Venus
(Fig. 13). In problem 8.5 it was determined that a tangential
impulse u = 2.95 km/sec > 0, was needed for a flight to the orbit
of Mars, while an impulse u = - 2.53 km/sec < 0 was needed for
a flight to the orbit of Venus. Adopting for the Earth's orbit

T = 365.3 days = 3.15'10 sec, and r = 150'106 km, we get that
for a flight to the orbit of Mars

[i 295* 315-10 2,953 5.0
j 365.3 [1 - ,,4.f1,5f10 45. 1L,. 5 0O'

=365.3 1 - 0.497 - 0.00 1] = 365.,3 (.79

365,3 4,41 = 515, days, ,= Tr, = 257,6days. /91

Under the same conditions, in the case of a flight to the
orbit of Venus we have

= 365 [ - ( 2 5332153.1307) 5 .0

,3,14 4.5* ' 3 14 ,5 1099
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=365.3[ 1 0,168- 0.001] = 3653 (s) -

= 365.3 -0.798 = 291,9days,,- T, = 146.0 days.

The same values of T were obtained in problem 6.10 by another
method.

Problem 8.7. A spacecraft moving in a circular satellite
orbit around the Earth must be launched from it, receiving a
tangential velocity impulse, and must be inserted into hyperbolic
orbit with given velocity v . At which radius r ,f )the initial

circular orbit will the impulse b& smallest?

Solution. Insertion into hyperbolic orbit can be effected
only by applying a positive tangential impulse u (Fig. 21), when
the circular velocity of the craft rises to the hyperbolic
velocity v = vci + u > v pa r = v ci. From the integral of energy

2 2 2 2 2
for hyperbolic motion v - v = v - 2v . v = h it follows

par ci C

that (vci + u) 2 - 2v2 v , so that u = V2v 2 . + v2 - v .. SinceCi 21 ci 0 ci

dvci/dr = d( /+/r $ 0o/dr, the condition du/dr' = 0 corresponding

to the desired minimum of impulse u

_/ 2Vci dvci 0,

2 2 2
can .be satisfied only when v 2v i =.v p = _2/r.

ci par

This corresponds to the impulse /92
u = vci' hyperbolic velocity

v = 2v ., and radius-vector

r = 2p1 /v = 2p /h.

h cProblem 8.8. A transfer,
which is called a transfer in a
Hohmann ellipse, is effected from

/ an initial circular orbit J with
radius rl (Fig. 22 a) to the final

circular coplanar orbit F with

Fig. 21 radius r2. At point A of orbit
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a b 2 p

A A
J c C

Fig. 22

Key: 1. v .

2. v
ci.l

J the spacecraft receives a positive tangential impulse u . As a

result, motion continues along the ellipse T .( > r ) to point B

(orbital apocenter T), where a second positive impulse u 2 inserts

the craft into its final orbit F (r 2 > a). Determine the total

incremental velocity u = ul + u 2 in transferring from one orbit

to the other and determine at which ratios of rl to r 2 will the

ratio u to the initial velocity vci.1 be at a maximum (the problem

of transfer via a Hohmann ellipse).

Solution I. Let us look at the initial craft velocity at
point A as it moves in the circular orbit v ci.=/p/r . The valueci.l 1
of the velocity after the increment v = vci.l + u1 at this same

point, which is the pericenter of the transfer orbit T with semi-
axis a = 1/2 (rl + r 2 ), can be determined from the integral of
areas:

RAJr= )4  a r1+ r2 ) V r, r + r'

so that /93

S= vci.l +u "-l
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Thus, for transfer to orbit T, the craft must be given the tangen-
tial impulse

u = v v =a . r,1 x ci.1 i r, " >

When impulse u2 is applied at the apocenter of the transfer

orbit, that is, at point B, the velocity after the increment
vci.2 = va + u2' where

vci.2 =r'

' - - v r- r r,

so that

u 2 c V i .2 -4 = -F -- r i

re r,+r

Let us set up the formula for the overall velocity increment
u = u1 + u2, by representing it as

u ,j2 ra + 2 r.
, V .1 - ( r, Vr, r .
ci.l

Introducing the notation R = r2/r1 > 1, we can write

Vci. 1

(8.13)

Let us determine the desired maximum of this quantity by the formula

d u ) I/ 2R 12 R-1 ( 2R /2

dR (vc 1) +R +R(J ,~/ - 2R = 0 ,
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whence there follows the cubic equation R3 = 15R 2 - 9R - 1 = 0, /94
which has a real root R = r /r= 15.58176. When R > Rmax
u/vci.1 decreases. A plot of this quantity as a function of R

is shown in Fig. 23. From this figure it follows that the energy
outlays necessary, for example, to reach the orbit of Pluto from
the Earth's orbit, are greater than to reach the orbit of Mars,
but smaller than to reach Jupiter's orbit. The energy outlays
for heliocentric Earth-Saturn and Earth-Uranus flights are about
the same as for flights to Jupiter and Neptune.

Solution II. To determine
- u1 and u2, we can use Eqs. (8.11')

7 CalPH and (8.12'):

2 I4 5eomyfH ImOH

R l+R

0 5 10 15 20 25 3 3 40 _

Fig. 23 after which again get
Key: 1. Saturn

2. Jupiter = (u+u.)--1 , = R + F
3. Mars u= + + _+R.
4. Uranus ci.l
5. Neptune
6. Pluto
7. Vci.l This formula is valid for any R,

and when R < I, u < 0, and when
R > 1 (as in this case), u > 0.

Problem 8.9. Using the formulas in problem 8.8, calculate
the total velocity impulse u = ul + u2 needed for a transfer via

a Hohmann ellipse from the circular Earth orbit (v . 2978
6 ci. 2978

km/sec , rl = 150.106 km) to the circular orbit of Mars (r2 =

= 228.10 km). Characterize the velocity change as the craft
transfers from orbit to the other. /95

Solution. Let us use Eq. (8.13) for the calculations, where

R == 2 52 , so that = _ +
Vci-. 1I

+ -- 0.66)+ V -.6 0.376 + 0.,811 -

=0,f87, and u = 0,187.iv = 0,187-29,78 = 5,57km/sec.
cia1
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The distribution of velocity impulses as the craft transfers
from the Earth's orbit to the orbit of Mars is carried out as
follows. On being launched from the Earth's orbit (vci.1 = 29.78

km/sec), the craft given a positive impulse ul = 2.95 km/sec (see

problem 8.5) sufficient for the transfer ellipse T at the aphelion
to touch the orbit of Mars. The elliptical transfer is charac-
terized by these velocities (see Fig. 22):

V, = V = Vl + u, = 29.78 +2.95 = 32.73 km/sec,
8 = V,= - =53273 = 24,53 km/sec.

The second positive impulse u 2 
= u - ul = 5.57-2.95 = 2.62

km/sec is important to the craft at the aphelion of the transfer
ellipse B and inserts the craft into the circular Mars orbit with
circular velocity Vci.2 = vB + u = 21.53 + 2.62 = 24.15 km/sec.

This circular heliocentric velocity in the orbit of Mars can be
obtained by the formula

vci.2 = - V8.2 =  = 24.15 km/sec.

Problem 8.10. Determine the total velocity increment in
transfer via a Hohmann ellipse from initial circular orbit with
radius rl to a final circular orbit with smaller radius r2 (Fig.

22 b).

Solution. For point A, which after application of a negative
velocity impulse ul becomes the apocenter of the Hohmann transfer

ellipse T, we have

ci.1 '.

/96

u v v < o
c a ci. r1 r+ ..

When the impulse is again applied at pericenter B, we have
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. -v = c . ri<0+
U 2 = ci.2 " r,  r'- +r.

Thus, we again obtain Eq. (8.13):

Vci.1

where R= <

Problem 8.11. Using the formulas in problem 8.10, determine
the total velocity impulse u = ul + u2 needed to transfer a space-

craft from the circular Earth orbit (v ci.= 29.78 km/sec, r =

= 150"106 km) to the circular Venus orbit (r2 = 108106 km).

Solution. Setting

150R = -. = 1-0,720,

in Eq. (8.13), we get

u/vci.1  ( -1.389) +3-i = - 0.476 ,

and the total impulse u = 0.176 vci. - 0.176'29.78 = - 5.24
km/sec.

The distribution of impulses occurs as follows. During
a launch from Earth orbit (v = 29.78 km/sec), the craft is
given a negative impulse u 9'i21 53 km/sec (see Problem 8.5) suf-
ficient for the transfer ellipse T to touch the orbit of Venus.

Further, we have vA = v = vci. + u = 27.25 km/sec, vB = v = /97

v r /r = 27.25'150/108 = 37.77 km/sec.

The second negative impulse u 2 = u - u= - 5.24 + 2.53 =

= 2.71 km/sec is imparted to the craft at the perihelion B and
inserts it into the Venus orbit: vci.2 = vB + u 2 = 37.77 - 2.71=

= 35.06 km/sec. It is precisely this circular velocity along the
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Venus orbit that we find from the formula

ci.2  V -._08o6 = 35.06 km/sec.

Problem 8.12. Using the results of problem 818, determine
the total velocity increment for the limiting case of transfer
to an "infinitely distant" final circular orbit (r2 >> rl ) (Fig.
24 a).

Solution. Determine the limit of Eq. (8.18) as R= -d:

I cii

Thus, the total velocity increment tends to the limit

e ,+ =( -)V ci.1 .041 v ci.1

that is, from the standpoint of energy outlays this transfer is
equivalent to the departure of the body "to infinity" in a para-
bolic trajectory whose pericenter is at the point of application
of the unit velocity impulse u = (-1) vci.l = vpar - v ci.l.

Solving the inverse problem -- on return "from infinity" to the
initial orbit J, which is equivalent to the problem of the depar-
ture of the point "to infinity" with final orbit F, we obtain the
formula for the total negative impulse u = uI + u2 = - (/2-1)
vci.2 =- 0.41v < 0.ci.2 ci.2

Problem 8.13. Determine the overall velocity increment
needed to transfer a craft along a three-impulse bielliptical
trajectory (Fig. 24 b) when its motion originates initially along
ellipse T1 to point B', where it is given a second positive

impulse u2 (see condition of problem 8.8), and then along ellipse

T2 to point C, where this craft receives a third, negative impulseu3 inserting it into the final orbit F.

Solution. To determine the impulses ul, u2, and u3, let us /98

use successively Eqs. (8.11'), (8.11), and (8.12'):
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r /99

1 p.

T since according to the theorem of
areas we have

3-
V.KP k Finally,

b

u (u. u,+ s) - _ 2 +
2 7_7PVI+T

VT, ' YOQ V k6-2-5) (a_1 R (8.14)

8-------- - A-- -C

J\ We can easily see that from Eq.
-Z U (8.14) when R Q (r2  rB, ) Eq.

F (8.13) follows as a particular
case.

Problem 8.14. Determine the
Fig. 24Key 1 energy needed to rotate the planeKey: . Vci. 1  of the circular orbit of a craft

2. Vci.2 moving along it at velocity

3. Vci.= vl = Vci = by 900

Solution. Suppose a spacecraft is moving along a circular
orbit with velocity v 1 and at some moment of time receives the

increment Avl perpendicular to the radius-vector r at point M.

Then the resultant velocity v2 =  i + Av will also be perpendicular

to r, and if Iv2 1 > v 1I1, the point M of application of the impulse

will become the pericenter of the new elliptical orbit (Fig. 25).
Here the plane of thenew orbit will be inclined to the plane of
the initial orbit at an angle i (the angle between the vector is

v1 and v 2 ).

From the vector triangle we have by the theorem of cosines
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t) = V)2 2--V
2 v cos i

/0 To conserve the circular velocity
_ V1, the craft must be given the

impulse AV,=2V, s~iL./

Fig. 25 In this case the inclination of
the new orbit to the plane of
the initial orbit i is arbitrary.

In the limiting case (when i = 900 and v1 = v2 ) we obtain /100

AV"=, V- ( (8.15)

Let us perform the calculation. Let the spacecraft move in a
circular orbit of the Earth with circular heliocentric velocity
v1 - 29.78 kn/sec (artificial planet). For the craft to be

inserted into a circular heliocentric orbit whose radius, is equal
to the radius of the Earth's orbit and which is inclined to the
plane of the Earth's orbit by i = 100 there isrequired the impulse

A , = 2v, sini= 2-29780,087=%8 km/sec,

and for insertion into a polar heliocentric orbit (i = 900), the
impulse

av4= U.v' =.29.78 = 42,11 km/sec

is required. Thus, the energy necessary to rotate the plane of
the circular orbit 900, m(Av) 2/2, is equal to the energy needed

to provide the circular velocity IRE at the point of applica-

tion of the tangential velocity impulse, that is, to transfer
the craft. from a circular orbit to a parabolic orbit lying in
the same plane.
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CHAPTER NINE /100

SPHERE OF ACTION. PROBLEMS OF THIRD ESCAPE VELOCITY

The sphere of action is an arbitrary geometrical concept
employed to "delimit" two gravity fields. The term sphere of
action of a lesser gravitating mass relative to a greater refers
to an imaginary.surface within which it is useful to assume the
lesser mass m as the central body, and the greater mass M as the
perturbing body. The relation of the accelerations of a point
with mass im relative to a point with mass M (m < M) at the boundary
of the sphere of action is as follows:

Perturbing acceleration due to M _ Perturbing acceleration due to m
Acceleration due to central mass m Acceleration due to central mass

M

If we neglect the perturbing acceleration, we can conditionally
assume the sphere of action to be a sphere of equal zero accelera-
tion delimiting the two gravity fields. The radius of the sphere

of action must be determined from the formula P(

where A is the distance between the masses. From this formula let
us find the radius of the sphere of action of the Earth relative

27 33
to the Sun, assuming m = M = 61027 g, M = M = 1.97'10 g, and

6  o
A = 149.6'106 km:

44 9 . 6 - 10" j.-j0s) = 929,900 930000 km. /101

Similarly, we can determine, for example, the radius of the Moon's
sphere of action relative to the Earth (p = 66,000 km) or the
radius of the sphere of action of the Sun relative to the center

of our Galaxy (p = 9'1012 km).
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In the problems presented below, we will allow for the dimen-
sions of the sphere of action of the Earth only for geocentric
motion of a point, For heliocentric motion we can neglect the
dimensions of the sphere of action and assume that a point at the
boundary of the Earth's sphere of action has the same heliocentric
circular velocity as the Earth:

v Vci/ =.60 =Vt27-610 =29.78 km/sec.
1 . ci/e) 6/0 449.6-106 1 1

If the point (rocket), on departing beyond the boundary of the
Earth's sphere of action, has.sufficient residual geocentric
velocity Vb rc/+' its resultant heliocentric velocity is deter-

mined from the theory of velocity.additions:

Vroc/e = Vl.ci/e + Vbo.roc/+' (9.1)
0

The positive direction of velocities always is associated
with the true direction of the Earth's orbital motion, which is
taken as positive.

Problem 9.1. Determine the velocity at which a rocket must
be launched from the Earth's surface Ivlal for the rocket to stop

at the boundary of the sphere of action (vbo.roc/ = 0). How

much time will this flight take? Characterize the further helio-
centric motion of the rocket.

Solution. Let us write the interval of area of the launch
point of the Earth's surface and at the boudary of the sphere of
action:

23± / 2 _ 9. (9'2)
6 bo .r o /+ P (92)

0

whence when v bo.roc/+ = 0 and p 930,000 km, we determine the

constant of energy h: =-0,857 km /sec < 0,P g3 0 0857 km/sec <0,

such that the trajectory of the geocentric arrival at the boundary
is an ellipse (stopping at a finite distance is not possible for /102
parabolic motion). The velocity of the geocentric launch is

IV 1a +I= V/ +  =  =-O,85 7+(,.1)=I11,5 km/sec (9.3)
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and it is close to the parabolic velocity v = 11.19 km/sec.

The flight time to the boundary should be determined from
Kepler's equation. Let us find, first, from the integral of area

2  2a: v a v + (2/R - 1/a), whence
O O

a= P A F 6370* 5u6OO _
2fL- R v" 2-398,600 -8370(1,5)- 470,200 km.

The eccentricity of the ellipse e=- -= 986. From the

formula

- a ( - e cos E) = 930,000 km

we: get cos E = - 0.992, sin E = 0.126, E = 170044 ' = 3.015, and
e sin E = 0.124, so that Kepler's equation becomes

'C -a (E- estr E) = (4,?02-10s)3 x

x (3.015 - 0.124) = 1.476'106 sec =

= 410 hours = 17.08 days.

Let us characterize the further, heliocentric motion of a
rocket. Within the frame of reference of the above assumptions
it can be stated that a rocket, losing geocentric velocity,
"always" remains .at the boundary of the Earth's sphere of action
and will move together with the sphere, that is, together with
the Earth, around the Sun with circular velocity vci/o = 29.78

km/sec. Actually, this motion will originate along a trajectory
close to the Earth's orbit, and with a velocity along this trajec-
tory that will be determined by the distance 149'106 km + 930,000
km to the Sun.

Problem 9.2. A rocket is launched from the Earth's surface
with the second escape velocity vlI = 11.19 km/sec and will move

along a parabolic trajectory intersecting the Earth's sphere of
action. Determine with what residual parabolic velocity the rocket
arrives at the boundary of the Earth's sphere of action and how
much time will the flight take to reach the boundary? Characterize
the heliocentric motion of the rocket after departing from the
Earth's sphere of action.

Solution. Let us determine the residual parabolic geocentric
velocity at the boundary of the sphere of action for given initial /103
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launch conditions:

IV_, . = 0.927 km/sec,
Vboroc/+ = Il.par - 98 0.927 km/se

0

The flight time to the boundary of the sphere of action can be
found from the formula for the flight time along the hyperbola
from problem 6.15:

T (p)=(3 V V) -2p-p ( p +p),

from which when p = 929,900 km, p = 2r = 2R+ = 12,740 km we get
0

G =(3V5986 oOY' 1/2.y929900 -12740 (929900-12740).

= 0.243'106 sec = 67.60 hours = 2;81 days.

The character of the further, heliocentric motion of the
rocket is determined by the direction vci.roc/+ which in this

problem is not fixed. In any case, the theorem of [velocity]
addition (9.1) enables us to obtain either the increase in the
heliocentric velocity within the limits 29.78 < Vroc/e < 29.78.+

+ 0.93 (29.78 < Vroc/o 30.71) km/sec or else its decrease within

the limits 29.78 - 0.93 5 Vroc/o < 29.78 (28.85 < Vroc/o < 29.78

km/sec. In the first case the rocket will arrive at the elliptical
trajectory whose semi-major axis is greater .than the axis of the
Earth's orbit, where the point of departure from the Earth's sphere
of action.becomes the perihelion of the elliptical orbit, and the
aphelion is on the other side of the Sun. When vroc/ = 30.71

km/sec, the orbital plane of the rocket coincides with the Earth's
orbital plane. In the second case, the semi-major axis is smaller
than the radius of the Earth's orbit, the departure point becomes
the aphelion, and the coplanar orbit is formed when vroc/o = 28.85

km/sec. The direction of motion in both cases coincides with the
direction of Earth motion (direct orbits). We note that this
consideration is known to be valid for any residual velocities
in the interval 0 < Ivbo.roc/+[ 0.93.

The problem of the addition of heliocentric velocities at the
boundary of the Earth sphere of action and the determination of
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the trajectory of the rockets heliocentric motion is identical to
the problem of the motion of a rocket moving along an initial
circular orbit under the influence of the additional velocity
impulse u or arbitrary direction and magnitude (see Chapter Eight).
In this case the role of impulse u is played by residual velocity /104
Vbo.roc/+'

0

Problem. 9.3. With what mkinimum geocentric velocity must a
rocket be launched from the Earth's surface for its heliocentric
trajectory to be tangent at its aphelion to the orbit of Mars?
Solve this same problem for the case of tangency to the orbit of
Venus.

Solution. In the case of the heliocentric trajectory being
tangent to the orbit of Mars, the minimum launch velocity Ivlal

is the velocity at which the direction coinciding to the residual
velocity vbo.roc/t coincideskwith the direction of the Earth's

circular velocity so that vbo.roc/t > 0, and on the basis of the

theorem of [velocity] addition (9.1) we get the algebraic sum
(the orbits are coplanar). Reducing this problem to the problem
of a positive tangential velocity impulse u E Vbofroc/+ > 0, let

us use the value u = vbo.roc/+ = 2.95 km/sec (it is shown in
o

problem 8.5 that this velocity impulse is necessary and sufficient
for the elliptical orbit of the rocket at its aphelion to be
tangent to the orbit of Mars). Writing the integral of energy
(9.2), we can determine the constant of energy for the geocentric
trajectory:

2 - 2 = ( 2 .9 5 ) 2-9Boo00 = 8.702-0.57=7,845>0.
h = bo.roc/+ - g29900

0

Hence it follows that the geocentric trajectory of departure is a
hyperbola. Indicentally, this also follows from a comparison of
the value of the residual velocity at the boundary of the sphere
of action with the corresponding value of the local parabolic
velocity (see problem 9.2):

vbo.roc/+ = 2.95 km/sec, vl.par = 0.93 km/sec.
O

Let us determine the required hyperbolic launch velocity:

Ivla = .t V7-.S T ) = ,f.53 km/sec.
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It corresponds to the resultant heliocentric perihelion velocity
at the boundary v = v - 29.,78 + 2.95 = 32.73 km/sec, so

that the heliocentric trajectory is an ellipse.

In the case when the heliocentric trajectory is tangent to
the orbit of Venus, the residual velocity corresponding to the
minimum launch velocity IVlal must be directed so that there is /105

an algebraic subtraction of velocities and so that the resultant
aphelion velocity v = roc/ = 29.78 - 2.53 = 27.25 km/sec, where

u = v brc+ - 2.53 km/sec is the negative tangential impulse

necessaryland sufficient for the elliptical trajectory to be
tangent at its aphelion to the orbit of Venus, (see problem 8.5).
The constant of energy corresponds to the geocentric trajectory

h = v - 6.401 - 0.857 = 5.544 > 0, so that the
bo.roc/+ P

O

geocentric trajectory of departure as before is a hyperbola.
Actually, by comparing velocities it follows that Ivbo.roc/+ =

0

2.53 km/sec, and Iv1 par = 0.93 km/sec. The minimum hyperbolic

launch velocity here

Ivla = + = , 5.544 + (11i,49) 2  km/sec,

so that the heliocentric trajectory is an ellipse.

Note that in both these cases the elliptical orbits are
coplanar orbits of Earth, Mars, and Venus and have the same direc-
tion of motion, coinciding with the direction of orbital motion of
the Earth, that is, they are direct orbits.

Problem 9.4. What must the minimum geocentric launch
velocity of a rocket from the Earth's surface be Ivlal for the

rocket to acquire the heliocentric velocity vroc/ needed to

leave the solar system along a parabolic trajectory. (Problem
of third escape velocity.)

Solution. The parabolic heliocentric velocity in the Earth's
orbit is vl.pa r 

= 42.11 km/sec (see problem 5.6). Therefore, for

the rocket to leave the solar system along a parabola it is
necessary and sufficient for the direction of the geocentric
escape velocity Vbo.roc/+ to ensure that the quality Vroc/=

0
= v.par is satisfied. Here the minimum launch velocity corre-

.par
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sponds to the case of the algebraic sum of velocities based on
Eq. (9.1), which ensures the direct orientation of motion along
a parabolic trajectory coplanar to the orbits of the Earth and
the other planets (Fig. 26).

Let us find the residual boundary velocity:

vbo.roc/+ = vroc/ = 42.11-29.78 = 12.33 km/sec.
0

Let us calculate the constant /106
of energy h from the integral

of energy for the hyperbolic
escape trajectory:

2 (2,3) 2* 098800

= vbo.roc/+ P
0

2 2
'r- .fapoaow = 151.18 km /sec 2  > 0.

5 p/e Unap/e
To this value h there corresponds

Fig. 26 the hyperbolic launch velocity

Key: 1. Earth orbit +I( )

2. Earth Ivla + = I58 =

3. Parabola

4. Vbo.roc = 16.62 ;km/sec.

5. Vroc/o = Vpar/e
The minimum velocity attained
is called the third escape

velocity VII I . The launch of a rocket from the Earth's surface

with this velocity ensures realization of the heliocentric escape
velocity.

This problem on the escape of a rocket from the solar system
along a direct parabolic orbit is identical to the problem of the
application of a positive tangential impulse u bo.roc/+ = 12.33

0
km/sec. This velocity is the upper limit to the velocities
[Vbo.roc/+I with which the resultant heliocentric orbit will be

o
elliptical. By comparing this result with the result of problem
9.2, we can conclude that with variation in velocity, having any
direction, within the limit 0 < Ivbo.roc/+! < 12.33 km/sec, the

O

heliocentric orbit will be an ellipse.

115



Based on the formulas in problems 9.1-9.4 we can solve the
problem of the "falling" of a point for the Sun or the problem /107
of an insertion along a parabQla to the inverse orbit, In the
problem-of "falling" toward the Sun it is assumed that.the rocket
at the boundary of the Earth's sphere of action has a zero helio-
centric velocity, that is, that it is "at rest" relative to the
Sun. Under the effect of its gravity force the rocket begins to
move toward the Sun rectilinearly (along a heliocentric radius-
vector). Here vbo.roc/+ - v = - 29.78 km/sec, Ivlal

boroc/+ +/ l
O O

2 v2 = 31.81 km/sec, which corresponds to the recti-bo.roc/+ II
0

linear "falling" trajectory lying in the plane of the Earth's
orbit. The theoretical time of motion can be determined from
Kepler's-third law, by examining rectilinear motion as the limiting
case of motion along a severely elongated ellipse with semi-major

axis a z 150'106/2 = 75.106 km, the period of motion along which
is 130 days, so that the time of flight to the sun is 65 days.

According to the problem of insertion into an inverse circular
orbit vboroc/+ = - 2l.ci/ = - 59.56 km/sec, Ivla 60.60 km/sec,

where motion occurs along the Earth's orbit in the direction
opposite to the true direction of its motion, such that in half
a year the rocket will again encounter the Earth. According to
the problem of escape from the solar system along a hyperbola for
motion in the direction -opposite the motion of the Earth (inverse
parabolic orbit), we have vbo.roc/ -vl.pa r - v = - 42.11-

boroc/+ 1.par l.ci

29.78 = - 71.89 km/sec, Ivla I = 72.80 km/sec ,

Problem 9.5. Determine the launch velocity Ivlal required

for a rocket to be inserted into a circular heliocentric orbit
whose radius is equal to the radius of the Earth's orbit, and
whose plane is perpendicular to the plane of the Earth's orbit.

Solution. The problem has two solutions: flight to the
"north pole" (i = 900) and flight to the "south pole" (i = 2700).
In both cases motion will occur with the same circular heliocentric
velocity v ci/ = 29.78 km/sec as the motion of the Earth, so that

for an equilateral vector triangle (Fig.. 27), the formula estab-
lished in problem 8.13 for the velocity impulse obtains:

Ivbb.roc/+ 2Vt Ivl.ci/eI = Ivl.par/l=

= 42.11 km/sec.
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Fig, 27 shows the case of /108
2 Pflight to the "north pole,"

when the vector v o,roc/+
bo• roc/o ,

makes an angle of 1350 with
the vector of the Earth's
velocity v +/ (for flight to

4 O
the "south pole" this angle
is 2250), In both cases the
launch velocity at the Earth's
surface is

Fig. 27 i 2
Key: 1. v la bo.roc/+ IIbo.roc/+ o

2. vi/ = 43.46 km/sec.
3. vla

4. Earth

117



CHAPTER TEN /108

TWO-BODY PROBLEM.
THIRD KEPLER'S LAW GENERALIZED

In the previous sections we considered the limited two-body
problem. In solving this problem it was assumed that the mass of

a space object is sufficiently small so that its attraction of
the central body does not affect the motion of the latter. However,

in the case when natural celestial bodies interact, the central

.body under the influence of the other body executes some motion,
which in turn is reflected in the motion of the former body. As

a result, both bodies execute Keplerian motions relative to their
common mass-center (barycenter) with equal periods of revolution.
In the problems given below we have examined some questions of

the motion of the "attracting" mass m in the case when the

acceleration of the central attracting mass M under the influence
of attraction by mass m cannot be neglected.

Problem 10.1. Two free points with masses m and M (m < M)

are moving under the influence of gravitational forces [mutual
attraction forces]. Determine the law of motion of mass m rela-
tive to mass M.

Solution. Let us consider the motion of points m and M in an /109

absolute inertial coordinate system (Fig. 28). For the radius-
vectors we have d dJa, d2

dt2  dta dr "

As a result of the action of the
pm attractive force, mass M will tend to

shift relative to the origin of coordi-

cnates in the direction r, and mass m
will tend to move in the direction

M opposite to it. Here the equations
-0 of absolute motion of both masses are:

y

Fig. 28
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M 
a  = fmM - - m •

Dividing both parts of the equalities by the mass m, we get

= frr ? , = - fM " (10.1)

The equation of motion of mass m relative to M becomes

da2 dEp - (1 0.1 )dt 3  - dt - dta, ( .

or

d2-
dt-j- +f(M+m)-=0 . (10.1")

By comparing the resulting equation (10.1") with the equation
of absolute motion (1.5) for a "nonattracting" point from the
restricted.two-body problem, we conclude that in this case relative
motion will occur according to the same laws as absolute motion,
but the gravitational parameter p = f (M + m). In other words,
the gravitating satellite m will move about the central body M /110
as if a "nonattracting" satellite m were moving around a central
body with mass M + m.

From the foregoing it follows that the formulas according to
which in Chaps. 149 we determined the various kinematic and
dynamic characteristics of motion (velocity, time of motion, energy,
and so on) can be used for determining these same characteristics
of motion also in the general two-body problem. But in this case
the gravitational parameter must not be p = fM, but must have the
new value p = f (M + m).

Problem 10.2. Two homogeneous spheres with radii R1 and R2

will begin to move from a state of rest under the influence of
forces of mutual attraction. Determine with which relative velocity
v these spheres will collide if the initial distance between their

centers is L, and the mass are m1 and m2,

119



Solution. Let us examine the case of rectilinear relative
motion in the general two-body problem. As indicated in problem
10.1, in this case relative motion can be replaced by the absolute
motion of one (any) sphere in the field of attraction of the other
(fixed) sphere with mass m + m 2 . Assuming that the spheres

attract as material points, we will consider that, for example,
the point with mass m 2 drops toward the point with mass m + m2,

where this dropping occurs from altitude L to altitude RI + R2 '

The force of attraction of mass m + m2 acting on point m2
is - fm 2 (ml + m 2 )r-

2 (we associate the positive direction with

the radius-vector of point m2 , drawn from ml + m2) , and the positive

work done by this attractive force in moving the mass m2 over this

section is fm 2 (ml + m 2 ) (1/R1 + R2 - 1/L). The theorem on change

in the kinetic energy of mass m 2 when it is in absolute motion and

has the initial velocity v0 = 0 is of the form

ifl, i- fm 2 (ni, + in,) R -

so that

V, = (R L (10.2)

If in this formula we assume m2 << m = M+, RI = R+, and
O O

R2 = 0, then again we get the formula for the absolute velocity /111

of dropping of the point onto the Earth's surface from altitude H:

-R(Ra+t) V R8 +H I

that we derived in problem 1.9. Based on problems 1..8 and 1.9,
it can be concluded that "receding" spheres must have this same
velocity vr (as the initial velocity) in order to be separated by

the given distance L.

Problem 10.3. Two free points whose masses are m and M move
under the influence of forces of mutual attraction. Determine the
motion of the points relative to their common mass center (barycenter)
C (Fig. 28).
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Solution. The position of the bar-ycenter C, lying along the
line connecting the masses m and M, is defined by vector p0C Thus,

(M + m) PC = M- + mp

If we let rM and Frm stand for the vectors determining the

positions of M and m relative to C, then + = Pc + F,, p. =

+ Frm I so that we can write (M m+ ) C=M( PC +

+ F)+ c ( + ) and

MFA + MFi =0. (10,3)

Since in this case the radius-vector of mass m measured rela-
tive to the radius-vector of mass M is of the form r= Mm = rm-rM,

we can write rM = r - r, and rm = r + r M .  The successive sub-

stitution of these expressions into (10.3) gives M (rm-r) + mr = 0,

MrM + m (P + rM) = 0, whence (M + m)rm = Mr, (M + m)FM = - mr

and

M+m M+n-P

(10.3')

Thus, the orbits described by masses M and m around the /112
common mass center C are similar to each other and similar to the
orbit described by a one mass around the other.

Let us look at the elliptical orbits of two bodies with masses
M and m shown in Fig. 29 a. For specificity,.we assume M = 2m,
which can correspond, for example, to the case of a binary star.
Both bodies describe about their barycenter C, as about a focus,
similar ellipses (with equal eccentricities), while continually
remaining along a line drawn through the barycenter, on the opposite
sides of it. The mass m describes an ellipse that is twice as large
as the ellipse described by mass M. The relation u /M = aM/m

deriving from (10.3) corresponds to this motion.

Let us evaluate this same phenomenon from the standpoint of
an observer situated on a large star M for which it is fixed.
Taking from Fig. 29 a the distances 'mM for each of the instants
1, 2, ..., 6 and plotting them in the corresponding direction,
let us schematically represent the orbit of the star m relative
to M (Fig. 29 b). Obviously, the major axis of the new orbit /113
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must be equal to the sum of the axes of the orbits of both stars
in their barycentric motion.(Fig. 29 a), so that the similarity
of. the three orbits is evident, In the general form, the relation

a,- - = a. + a. corresponds to this construction,

Let us write out the
equations of motion relative

a 4 to the mass center with refer-
.x ence-to the directions rM and

r :

! so that
6b d 2

P 2 ?z

Y. Orbit of m

u Y An o42 2ei.

to M

dt -(M+m) " r d " t (M+m r (10.4)

Each df these equations has the same form as Eq. (10.1'), so that
study of the relative motion of the points of both cases reducesto solving an equation of the form

dta + /t-L =0.. (10.5)

Thus, motion relative to the barycenter along the ellipses depictedin Fig. 29 a originates according to the same laws as absolute
motion, but in this case the gravitational parameters are

fM' fmt2 (r). , M+m), = ( m '- r (10.6)

ORIGNAL PAGE I8
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Here the motion of mass m relative to mass M obeys the same law,
but the parameter p = f.(M + m) (see Eq. (10.1")).

Problem 10.4. What kind of function will obtain between the
periods T. of the revolutions of planets around the Sun and the

1

semi-major axes al of their elliptical orbits if the motion of the

Sun caused by the attraction of the corresponding planet is taken
into account? Give the mathematical formulation of Kepler's third /114
law, generalized. Consider the cases of motion of bodies relative
to each other and relative to the barycenter,

Solution. It is based on problem 10.1'in which it was established
that the relative motion of a mass when one allows for mutual
attraction obeys the same laws as absolute motion, but where the
gravitational parameter p = f (M + m). Starting from the fact
that for absolute motion the relation between the periods of
revolution ti and the semi-majorlaxes of the planetary orbits ai

is of the form (see problem 6.5):

4 t ' - I = 2 V fM (10.7)

it is of the form

S4f( ' 2m f(M.+M,) (10.8)

for the relative motion of the i-th planet. For two planets we
get, respectively,

aTI f(MAI+n 1,) _ M. + m,
a,/T f(M+m,) Mo +m, (10.9)

or

a, T (+m/M (10.10)

The Eqs. (10.8)-(10.10) are given the name of Kepler's third
law, revised or generalized, in distinction to Eq. (1.11) of
absolute motion.

Under barycentric motion in accordance with the equations of
motion (10.4)-(10.6), for motions of small mass m. and large mass

1
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M we can write, respectively,

a,, (M. + m)
T~l = 25i =2L% ( 5+ i) (10.11)

T = 2s -= (M .+ /115

Based on the relations for the similar ellipses a,c/M,. /mi

(see problem 10.3, Fig. 29 a), it can be concluded that the periods
of barycentric motions T. and TM  are equal to each other.m. M

1 0 -

Reducing the barycentric motion to the motion of a mass m. relative
1

to the Sun M (Fig. 29 b), we can again replace the parameters
o and iM with the parameter P = f (M° + mi ), and the semi-axes

1
aM and a by the sum of the semi-axes a. = a + a , as the

O 1 O 1

result of which we again get the formula

T= f(M+rt4) Vf(M,+mj) (10.12)

From the relation for similar ellipses

M. nt M, + ME

there follows

(a, + a_0 m3 ( me:2=a.-

M( +r (Me+ ) =(M.+ m

The latter equation allows us to state that the period of relative
motion coincides with the periods of barycentric motions:

Ti T -, T'.

Problem 10.5. Determine the circular velocities of the Moon
(M, .) in its circular orbit (r = 384,400 km) and of a rocket

(m = 0) executing circular motion in the same orbit.

Solution. To determine the velocity of the rocket, let us
use the formulas of the limited two-body problem, so that
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S /398600Vro c  Vr 440oo = 1.018 km/sec,roc

To find the Moon's velocity, we must adopt the formula from /116
the general two-body problem and use the formula of rocket velo-
city, replacing the parameter F,=fM in it by the parameter

P6c =fl +M,)= 8.+.L. Knowing that the gravitational

parameter of the Moon =4900 km/sec2 , we have

4_ ~ 398600+4900 025
SV r 8440 .025 km/sec;

which means that the Moon will move faster than the rocket.
Actually, using Kepler's third law we can determine that the period
of revolution of the rocket is greater than the period of revo-
lution of the Moon:

T =2%. 2, 1c T -2n, 23L
roc C fT' S V f(Md + MC)

By comparing the results we get

roc > =1+b->I, (10.13

therefore, Tro c >T,.

Problem 10.6. The rocket will move in the circular Moon
orbit, where at the initial moment it is at a point diameterally
opposite the position of the Moon. How will the mutual disposi- i
tion of the Moon and rocket change?

Solution. As was shown in problem 10.5, the Moon will move
along its orbit faster than the rocket and will overtake it. After
a certain time T has ellapsed, the Moon will catch up to the rocket,
that is, the rocket will fall behind it. Let us determine the time
T by means of the formulas from problem 10.5, assuming that the
circular motions of the Moon and the rocket are uniform. We can
write the angular velocities as follows:

1.025 -i01 = 0,007 -l

w OC roc ro 384400 384400 sec
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Obviously, the Moon will catch up to the rocket when its angular
distance from the rocket, initially = , will reach 4 = 2w,
so that

4-'o = _= 3,(440 = 1,725* 0
=- wroc W'Wroc 1.82 sec n 6 years,

We can solve this problem by using Kepler ts third law, /117
generalized, by expressing the angular velocity in terms of the
periods of revolution:

T -9
w( -wroc 2( - Te/Tro"

Let us transform the expression within the parentheses by using
Eq. (10.8):

- T  = C+M - '  , 4 "

T roc 2a

Calculating the mean period of revolution of the Moon

S== 2% (= 2732 days,T F =2 -;, -o 39800+ 4900 days,

we get

Tg .. =81,5 = 81.527.32 =2,2310 days, 6 years
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CHAPTER ELEVEN /117

MISCELLANEOUS PROBLEMS

Problem 11.1, Determine the useful work that must be done
by a rocket engine to lift a spacecraft with mass m to altitude
H above the surface of a planet and at this altitude to impart
circular and parabolic velocities to it. The weight of the space-
craft at the planetary surface G; planetary radius R, and atmo-
spheric drag can be neglected.

Solution. The work done by the engine A is made up of the
work expended in lifting the craft vertically to altitude H and
the work needed for the initial-velocity vector to occupy a specific
position in the plane of the local horizon. Thus, the total incre-
ment in the kinetic energy of the craft mv 2 /2 (we assume the initial
velocity to be zero) is equal to the sum of the work done by the
planetary gravity and the useful work done by the engine:

±um( +A =-- A72 R+H R R(R+H)

where p is the gravitational parameter of the planet. Obviously, /118
for the craft to be inserted into an orbit with circular velocity

vci' = / , the following work is necessary

A pnH I!m(R+2H)
Aci = (R+H) R(R+H) = 2R(R+H)

and for insertion with parabolic velocity vpar = , the

following work must be done:

A = LH + MH r
Apar = +H R(r+H)

which does not depend on ascent to altitude H,
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If the weight of the craft on the planet G = mg, w'ere g is
the acceleration due to gravity at its surface, using the formula
S= fMpl = gR 2 (see problem 1.6), we get

GR(R+-2H)
Aci = (R+H) ' and Apar = GR,

We can easily calculate that for a craft weighing 5 tons lifted
directly from the Earth's surface with parabolic velocity, the
desired work A is 31.85'109 kgm.

par

Problem 11.2, A spacecraft with mass m approaches a planet
along a line extending through its center (along the radius-vector).
At which altitude from the surface must the engine be fired so
that the constant braking force mT it produces will ensure a soft
landing (landing with zero velocity)? The velocity of the craft
at the instant of engine firing is v0 , the gravitational para-

meter of the planet is p, and its radius is R. The attraction of
other celestial bodies, atmospheric drag, and change in engine mass
can be neglected.

Solution. This motion occurs under the influence of the
planetary gravitational force and the braking force of the engine,
whose resultant of which is of the form

7,'r

The change in the kinetic energy of the craft is equal to the sum
of these forces expended in moving it from the beginning of the
liftoff (instant of engine firing) when r0 = R + H to the soft
landing (r = R):

2
mVlan -~ Lnm( - ) +mT(R-r,),

By substituting vlan = 0 in this equality and dividing both sides

by m, we get the equation

S+ T (R - r) /1192 L o

from which we can determine the altitude at which the engine is
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fired, by solving the corresponding quadratic equation for r0The altitude is

H TR + +TR+ -4T-R. (11,1)

Determine with which sign we must take the root, By denoting
the radicand with A, let us write (11.1) as v  =-

=2TH+TR-. -  , and let us write the integral 'of energy in the

form =TH- + so that Tr ± . From

this it follows that when > , the root must be taken with

the "plus" sign, and when F< -- with the "minus" sign.

But since RT~- R >O1>, for a soft landing it is necessary

that T>R(R+H) > (R+H)2 This means that in Eq. (11.1)

there must only be the "plus" sign in front of the root,

Problem 11.3. Set up the equations of rectilinear motion of
a point with mass m in the Earth's gravity field for the cases of
ascent from the Earth's surface (r = R +) to altitude H and falling

o
to the Earth's surface from the same altitude without initial
velocity. Determine the time of motion and calculate it for the
case H = R+.,

o

Solution. The equations of rectilinear motion in the Earth's
gravity field are of the form

_e -fnM d 2- f'M S 2R

In problem 1.8 the launch velocity U- P H needed

to bring a point to altitude H was determined. It is equal to
the landing velocity of the point when falling from the same
height, so that the initial equations are of the form:

for the ascent t0, ro=R,, .Fo o >0,

for the descent t =0, r=R +H, = 0.

129



In solving the second-order nonlinear equation r= we 120

must use the substitution Fdr=id',: after which the equation

takes on the form d=-- R dr Integrating it, we get the

integral of energy eintegral of energy r C, where we find the constant

FC= + r from the initial conditions, so that in both

cases C = -4 Let us determine the time of motion from the

integral of area, by transforming it into a first-order equation
with separable variables:

r ± -drR r dr,
dt=+ 2(gR +Cr) dr = 2 - R+H-r

where the "plus" sign corresponds to the ascent (dr > 0), and the
"minus" sign corresponds to the descent (dr < 0) of the point. Thus, te
ascent time is equal to the descent time:

t = 7 - ' where I =J - dr.j

The integral I is taken by means of the substitution

~H --r dr =2sLrhalq d =(f-cos2yq)dy,i'c R+H VR--r

so that

_ = (-cos2)d = -- (o + sinqcos q,,

where

s =+H = o - f( ) , so L cos +H

13cc arccos rcs
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Finally, we have

I R++R-HH2t , = RH+ arccos , (11. 2)

or
t - l [V/H+ (R+H) acrcsLthV

(11.2')

We can easily see that Eq. (11.2t), as R + m, is transformed into /121

the formula of uniformly accelerated motion t-V2H/g,j corresponding

to Gallileo's formula v=v27g (see problem 1.8).

Let us calculate the time of motion of a point for the alti-
tude H = R+ by formula (11.2):

0

t~i( 2,5 7 0 t03 2065 sec = 34.5 min.

Problem 11.4. Two points with masses m and M begin to move
from a rest state under the influence of forces of mutual attrac-
tion. Determine the time T by which the points will collide if
the initial distance between them is L.

Solution. As indicated in problem 10.1, the relative motion
of the points in the common two-body problem can be replaced by
the absolute motion of one of them, executed under the influence
of the gravity force of a new mass M + m, and thus we can reduce
this problem to the problem of the motion of a moving point relative
to a fixed point. The latter problem was already solved by us for
the limited two-body problem (see problem 11.3). By substituting
in Eq. (11.2), H = L, and gR2 = v = f (M + m), and by passing to
the limit as R + m, we find

= (11.3)

We note that this result can be obtained directly from the integral

of energy i- -=h. Actually, for the case of descent

(O, .= L) when t = 0, we get h=--E-- and Wi=- /~Ir,
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whence

r= L -dr= JV-- dr.
4 0

Making the substitution r=Lsnac, we again get

0 -M .

The hypothetical time of fall of the point to Earth adopted
as the attracting center with gravitational parameter p+ from

0
altitude H = L = R+, calculated by this formulas, is t = 890 sec =

0

= 14.8 min.

Problem 11.5. A heavy sphere moves along an imaginary recti- /122
linear channel extending through the Earth's center. The force of
attraction within the Earth is proportional to the, distance to its
center and is oriented toward this center. Determine the velocity
at which the sphere transits the Earth's center and the velocity
at which departs from the surface for the cases v 0 = 0 and v.1>0,

and also the time of motion in both cases.

Solution. Writing the condition of equality of attractive
force and gravity at the surface of the Earth, we get

F=-k 2 M, IFJr., =.kamR. =mg, and k 2 = g/R+, on the basis
O

of which.the exact law of action of the force will be of the form

F=_gr.=- F. The elementary work done by this force is

8A =F-dF = - ~ , , while the total work done as the sphere

moves within the globe is A=- ×xJx r =- (ri -_ 9.
Determine the change in the kinetic energy of the point as it

moves toward the center and from the center toward the surface:

mv iuv mg (0 R)
- 2 - (2R -R)= mR >0

2 12 2R
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where vl is the velocity of departure at the surface, always equal

to v0 . The velocity of transiting the center is =+v,-) R 6 =v+grR6 .

For the case of motion without initial velocity, it is ? ,

= 7.90 km/sec. The equality v 0 = v1 = 0 means that the sphere

at once will fall back and its further motion will be an undamped
harmonic oscillation. If v 0 = v1 > 0, this motion will occur in

the "channel" whose length would be apparently increased by 2H,
where H is the altitude at which the sphere is lifted above the
Earth. The law of oscillation_in this case will be more complex,
since the force of attraction F =-j-Fo/r' operates outside the

Earth (see problem 11.3).

The equation of motion of the sphere within the Earth is a
homogeneous second-order linear equation (the equation of free /123
harmonic oscillation): m..-kmr , or F+kar=0; , where

k=/R. • Its general solution, as we know, is of the form -rCcoskt+'

+C stlkt so that =-C, k sin k t + C k coskt.

Let us look at four cases of motion.

I. Falling to the center without initial velocity (v.=, 4 0)

=Ra, r o - 0 , C4 = Ra, Ca=O, r =Rcos 1 t,

tI= arcco O 2-4 I i When t-0 r,=R,, t z=t, r =0.

It is of interest to compare the calculated t I = 21.1 min

with the hypothetical time of fall of the point to Earth,
attracted to the fixed center. It is, as was shown in problem
11.4, 14.8 min. This difference is due to the fact that for the
law of attraction F ~ 1/r 2 the acceleration of a point with this
same section of the trajectory will be greater than for the law
of attraction F ~ r.

II. Falling to the Earth's center with initial velocity

IV0 1 >0: r,=R, o1V%--.I<o0, C, =R8 , Ca=- =- -IwDIf < 0,

q =Rs, cost -I Iy .iStn ft -CoSl/ t

tl= arctg ~ , t, (v,= o)= tr . When ' t =0 r =R,

t= t, =1.
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III. Ascent to Earth's surface, where the sphere halts
(v1  = 0):

When t=0O r, =0, t=t 1 , r =R6. /124

IV. Ascent to the Earth's surface, where at the residua'l
velocity ['vlJ > 0:

r'y= Rv s L nv t( t arcs____

- =rct Y.t t t (v)=o )= 2VI =t_ =tM .

When t=0 r = t , L r

Finally, we have

t t , _ t@i I, tt I t 2 >2.

Problem 11.6. A point with mass m moves under the influence

of the central force F=--( + ±), where P > 0 and v are certain

constants. Determine the trajectory of the point, considering

that the incremental force - mv/r 3 can be either a force of
attraction or a force of repulsion (depending on the sign).
Set up the equation of conservation of energy of the point, using
Binet's formulas.

Solution. Based on Binet's second formula (see Chapter Four)
in which u = 1/r is the Binet variable and c = r2 $ is the constant
of areas, we can write

d 2  F (JLt U_ U L u
+Um2,2 + 0 2 U2 +a
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from whence we obtain the inhomogeneous second-order linear equa-
tion in the Binet variable

Yqj i-,, (i - -Ca (11.4)

from which when v = 0 there follows Eq. (4.11), given in problem
4.10. The solution of this equation can be represented in a dif-
ferent form, depending on the sign of the quantity 1 - v/c2. /125

I. For the case when > (Ca <c) we seek the solution
of the form

from whence it is clear that the equation of the trajectory

I<<I is the conic section

= +ecos k(cq ) (11.5)

ca1
that is moving, rotating about a focus, where P- , A =

and e= A(c-9) (e and E are arbitrary constants). Obviously,M I

when v = 0, Eq. (11.5) is converted into the equation of the

fixed conic section r= +es(- obtained in problem 4.10

as the solution to Eq. (4.11) only for the attractive:force F~-7,

that is, when motion is strictly periodic.

In this case, when the incremental force F " 1/r 3 is present,
the motion of a point described by Eq. (11.5) loses its periodicity,
that is, when is replaced with 2ff and the radius-vector has an
initial direction, its value differs from its initial value. Its

initial value is restored when the angle 4 is changed by the

amount 2k n (- , that is, when the radius-vector is

rotated by an angle that is somewhat larger than 2f in
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the case v > 0 (the incremental force is an attractive force)~ and
by an! angle somewhat smaller than 27 in the case v < 0 (the
incremental force is a force of repulsion). When e < 1, the
motion of the point in both cases is along an ellipse con-
tinuously rotating in its plane in the direction of motion of the
point v > 0 or in the opposite direction, when v < 0 (positive or
negative precession of orbit, where the angle of rotation of the
focal axis of the precessing ellipse during the time of one com-

plete revolution is = 2[-/c) -i . If v/c 2 is sufficiently /126

small that its square can be neglected, we can write the approxi-
mate formula thusly:

S2R [(I +_L.L) ]- R9a C2 ] - (11.6)

The trajectory of motion
has the form of a rosette (Fig. 30)
continuously filling with lobes the
circular part of the plane bounded
by the circles

r =a(i -e)= P

and

r . - a (I + e) i P

Fig. 30

where p, a, and e are characteristics of the ellipse.

II. In the case when i- 4 =o ( 9c Eq. (11.4)
becomes

d 2 u

Its ;double integration in q allows us to establish that the
trajectory is a fairly complicated spirallike curve (precessing'
spiral) originating from the circle r = r0 (q = 0).
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III. In the case when 4-r<O ( >c2 ) , the trajectory is a

spirallike curve with an infinite number of revolutions, originating
from the circumscribed circle r = rma x (r + 0, - -).

IV. If p = 0, that is, if the force of attraction F ~ 1/r 2

disappears, Eq. (11.4) becomes uniform, and one of its solutions
(when v > c 2 ) can be the equation of the logarithmic spiral

r = r 0 e
X . The solution of the equation of this type for the

force F - 1/r 3 was obtained by us in problems 3.9 and 4.2.

The force fields of these types are encountered, for example,
in the theory of motion of microparticles however the case of ,-/1 2 7
elliptical motion has an interesting interpretation also for
planetary motions. To show this, let us set up the equation of
conservation of energy of a point moving under the effect of the
force indicated in the conditions of the problem, utilizing Binet's
formulas.

Since the potential corresponding to the given force is of
the form U = m (Pr - 1 + 1/2 vr-2), the law of conservation of

energy T-U = h becomes Ma- mAr- ' - mr-a,

whence we have

V2 __ + 2P + u

Comparing this expression with Binet's first formula v =c Z[( +

+ u] , we get the equation of energy

+ C(11.7)

This equation, defining the trajectory of a particle moving according
to Newtonian mechanics under the combined influence of the forces

F - 1/r 2 and F - 1/r 3 has an analogy in relativistic mechanics.
It coincides in form with the equation of motion of a particle
moving according to relativistic mechanics only under the influence

of the force of attraction F , 1/r 2 . Here we have in mind that the
mass of a particle will vary in accordance with the Lorenz formula

m(- v/ , where m 0 is the rest mass, and vc is the velocity

of light.
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By writing out the equation of conservation of energy, instead
of the kinetic energy we must introduce the intrinsic energy of the

particle e =mvIplaying the same role in relativistic mechanics as

the kinetic energy in Newtonian mechanics.

Multiplying Binet's first formula by m 2 , we get

Id- ) 2 + Ua maCa

Let us set up for the numerator the formula derived from the
Lorenz formula after identity transformations:

a 0 a - Mo A

2 2
The quantity m v can be expressed in terms of the totalc

energy of a particle: E - m-r-'= mv - mu, ,

so that mav2 = v.2 (E + mu)a and ,mv =v (E+mLp~)2 -:.

By substituting this expression into Binet's formula, we get the
equation of energy

td +U 2EL ca-m, V 
4

-ea -z mUCatC (11.8)

coinciding in form with Eq. (11.6) if m = m0 = const. Here the
2 2

role of coefficient v is played by- /v . The coefficient p can

be replaced by Ep/m 0v , and so on.

This analogy of formulas enables us to give a qualitative and
quantitative estimation of the relativistic effect of displacement
of Mercury's perihelion.

The change in the mass of Mercury for motion along an orbit
proves to be more significant than for other planets, since on the
one hand its orbital velocity (mean) is higher than for these
planets. On the other hand, its orbit has a fairly high eccen-

138



tricity e = 0.206 so that the velocity change in the motion from
perihelion to aphelion also proves to be greater than for other
planets. Because of this, finding the influence of the relativistic
dependence of mass on velocity on the nature of the motion of
Mercury., manifested in the precession of the orbit and the displace-
ment of the perihelion, is easier than for other planets.

The analogy of equations found above enables us to use Eq.
(11.6) in calculating the angle a of displacement of the perihelion
under the influence of the velocity dependence of mass. After the
coefficient v has been replaced by p2/v2, Eq. (11.6) becomesa .

We know that v 3'105 km/sec. We can determine the constant ofc
areas c for Mercury's orbit from these velocities and distances:

r = 46'106 km, v = 57.8 km/sec, r = 70"106 km.; v = 38.0 km/sec,

so that c = r v = rv = 2.66'10 km2/sec 2 . The displacement of

the perihelion in one orbit of Mercury around the Sun (T = 88 days)

is C 3.4(27.10)2 8,6 2 -' rev - , which corresponds to the

secular displacement a = 7'.'2. This value of a is about one- /129
sixth of the observed displacement 42'.'9 per century, whose value
is due also to other relativistic effects.

This effect of the displacement of the planetary perihelion
can be justified also from the standpoint of the law of conserva-
tion of the kinetic energy of a point in a central force field
(law of areas). Actually, since the planetary velocity of the
perihelion v is at a maximum, the planetary mass m is also

larger than the mass at the aphelion m . Due to this law of areas,

mvy r .= mvar is not satisfied for a point with constant mass, and

excess kinetic moment appears at the perihelion: '

A= M, ?J r, - n r. = V. r. ("Lm- M.) = vr (rm-m1= 39J

- vL- y- v- .
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However, the orbital planetary motion is impossible without
satisfying the law of areas. Therefore this excess moment at the
perihelion AK is compensated by the incremental kinetic moment AK'
arising due to the rotation of the orbit around the sun in the '
direction of planetary motion, that is, it is caused by the posi-
tive precession of the orbit. This incremental moment AK' will
be larger at the aphelion than at the perihelion because r > r .
It is

AK'= n ar,-mv r,= (nr -m r:) cin 0 o(rl - r ),1

where w is the angular velocity of orbital revolution satisfying

the condition - .I By equating AK to AK', we get

Vx rx v - Va 5 7 ,8 46-o10 (57.8)2 -(38.0)2
2v= - r - r 2(3*.05) (70 -0) -('6*m0)a =

-14 -11.02'10 sec

Since a century contains t = 3.15'10 sec, the rotation of
Mercury's orbit in a century in arc seconds (1 rad = 2.06'105") /130

is o."= o"t = (1,02.10-')(2.06 105)(315 -10)s 72 .

Problem 11.7. A spacecraft with mass m moves in a central

attractive field under the influence of the force F= - o-Fo

in a circular orbit with radius r0. On the craft acts the engine

thrust T= p ,(a continuously-acting variable radial thrust).

Determine the nature of the change in the craft's orbit as a func-
tion of the change in the magnitude and sign of the constant
coefficient a. (Problem of flight with radial thrust.)

Solution. After firing the engine, the craft is continuously
under the influence of two forces directed along the same straight
line (along the radius-vector), where when a < 0 both forces are
directed toward the force center, and when a > 0 -- to opposite
sides. The resultant of these forces is

( -O) tM
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The replacement of (1 - a)p by the new gravitational constant
I' signifies "replacing" the true gravitational p-field by the
imaginary p'-field. Also valid for the new field are Kepler's
laws, since no fundamental changes occur in the equations of motion.
This replacement can be interpreted as a "change" in the mass of the
attracting center by the amount aM so that the relation of the
gravitational parameters is as follows:

k= , p'=(-)p0 ( =- Ci)FnM = (M- 1) = j

Let us look at several particular cases.

I. a < 0 (radial thrust is directed toward the attracting
center). At the instant of engine firing the i-field is replaced

by the p'-field, where p' = (1 - a)p > p. The motion of the craft

along the former circular orbit with circular velocity v=jY/7r /

now proves to be impossible since the theoretical value of the
circular velocity for a given r 0 in the p'-field is v'=ir 0 >O.

In other words, the actual velocity v < v' proves to be elliptical

with respect to the p'-field and the craft passes into an ellip-

tical orbit situated within the initial circular orbit (Fig. 31),
where the engine firing point M 0 proves to be the orbital apocenter.

II. a = 0 (thrust is absent)./131
In this case no changes in craft
motion occur.

III. 0 < a < 0.5 (the
radial thrust is directed from
the center). At the moment the

SIp-field is replaced by the plfield,

when p' = (1 - a)p < p, the actual

.. 4 circular velocity .r proves

on< to be larger than the theoretical
circular velocity v I and is

c=45 elliptical (v > v') with respect
to the p'-field. The craft passes

Oe>-1 .into an elliptical orbit lying
outside the circular orbit, and

Fig. 31 the point M 0 becomes its pericenter.

IV. a = 0.5. In this case

the actual velocity v=-v(iN is parabolic with respect to the

p'-field, since the theoretical value of the circular velocity

r = -' whence v=v'1r/ , and the craft leaves the

p'-field along a parabola.

V. a = I (one field "damps" another). The gravitational

field is entirely eliminated and the craft moves rectilinearly
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and uniformly with velocity v > 0 in a gravity-free space, along
a tangent to the initial circular orbit. The circular velocity

with respect to the p'-field here is absent: V'=f =

When 0.5 < a < I, we get hyperbolic orbits with respect to the
i'-field (v > v'/2).

VI. a > I. The effect of superimposing the fields is such
as to give the effect of the central field repelling the craft.
The circular velocity v' in the p'-field does not exist at all
(it is imaginary). The second branch of a hyperbola not containing
the focus 0 at which the central mass is situated is the trajectory
of motion.

We note that the equivalent of forces F' = F + T, just like
the force F, is a potential force, as the result of which the
actual radial thrust T is a potential force:

U r, -, = U = )u =- i - r-.132

The thrust of a plane mirror solar sail positioned perpen-
dicular to the solar rays can serve as an example -of a radial
thrust varying under the law T . 1/r2 , since the force of solar
radiation pressure varying according to the law F n l/r 2 can be
viewed as a thrust force (we have in mind heliocentric motion).

Problem 11.8. Prove that the motion of a spacecraft can
follow a logarithmic spiral r = r 0e if, in addition to';the

attractive force of the central body F n l/r 2, the craft is
continuously acted on by a variable thrust R a 1/r 2 tangent to
the trajectory. Determine the velocity along the spiral. Give
the energy characteristic of the thrust R. Find the time of
motion along the spiral. (Problem with tangential thrust.)

Solution. Since the point moves in a logarithmic spiral

r = r0e~,(x = ctg s) (Fig. 32) under the effect of a single central
force (see problem 4.2), this problem can only be the force F ' l/r 3

(see also problems 3.9 and 11.6). However, it can be shown that
this motion is possible under the influence of the attractive
force F . 1/r 2 (force of Newtonian attraction) if to it we add
the tangential thrust F n 1/r 2 . Let us.write out the equations

of motion in polar coordinates: m(F-r 2 )= F,+Rr,and m (r+27 R,

whence the radial and transversal craft accelerations are as follows:
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= r=- + cosp, w,= rq+2i4= slnp.' (11.9)

By differentiating the equation of the spiral, we find /133

S= r ctg p and P = r2 Ctgp + rq ctq p From the second equation of

(11.9) we have [ 9 j -(ri+2r2ctgp). By substituting this ratio into

the first equation of (11.9) we get:

r ~a (+ctgap) =I ,ar strop

whence

If from the first equation of (11.9) we determine R/m and

replace the derivatives i, a and Q by their expressions, we

find the acceleration imparted to the craft by the tangential
thrust, therefore, we find the thrust R:

R _ (P - (I sro +cosqp- co !p) i" /LsJ3

R = m cosp/2r .  /

Thus, for the motion to occur along a logarithmic spiral,
the tangential thrust R must be a force of repulsion proportional

to l/r 2 . These conditions are satisfied, for example, by the
pressure of solar radiation so that the theoretical possibility
of a' craft with a solar sail moving in outer space is evident
when the spiral angle B is equal to the angle of sail positioning,
that is, equal to the angle of incidence of the radiation at the
sail surface y. Taking the motion to be heliocentric (p = p ),

let us determine the craft velocity along a spiral, by replacing
the derivative r in the formulas by the radial and transversal
velocities:

v 1 .=*rctg=j/~icosp, v,= r =/sinp,

s'o that

V= _v (11.10)
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This means that at each point of the spiral the craft velocity,
always oriented along the tangent to this spiral, is equal to the

local circular heliocentric velocity at the given point and

decreases with growing separation of the craft from the Sun.

Using this formula we can get the energy characteristics of the /134

thrust R by writing the change in the craft's kinetic energy as

it passes from one point of the spiral to the other as equal to

the sum of work done by the solar gravity and the work done by the
thrust:

Mv 2  M?,2 A
2- 2

or

so that the work done by the thrust An =-0k .( -) is positive

as the craft goes farther and farther from the Sun (r 2 > r ) (in

contrast to the work done by the gravity) and is negative with
increasing proximity to the Sun (r2 < r1). In the case when the

craft goes away from the Sun, the kinetic energy drops off. Just
like the velocity, the work done by the thrust A does not depend

R
on the shape of the spiral (on the spiral angle 6), that is, does
not depend on the number of orbits that the craft must make around

the Sun to pass from one point to another.

We can easily see that the tangential thrust R is not a

potential force. We can be convinced of this by writing out the
projections of the resultant F' = F + R:

F,= r + 2ra = -C- os ,

F,' _11 COSP sirp.

Actually, the force F' is not a potential force since it is
impossible to select the force function U' satisfying simultaneously

the conditions of potentiality Fr' / and F, . So the

force R is not a potential force as well. We note that the resul-
tant F' is also not a central force, as the result of which neither
the integral of areas nor the Binet formulas are satisfied in this
problem.
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To determine the time of flight along the spiral it is suffi-
cient to integrate any of the relations for the velocity projec-

tions, for example, = - sLnap. Introducing the value of r

from the equation of a spiral into this relation, we get the

equation e3AW d F = M sip dt from whence we have

2 (r e" ) _'3 2r3/2 /135t=
3A F sLnp 3V Vcos

Thus, to pass from rl to r2 takes the time

t 1 qc0ap (11.11)

which depends on the spiral angle P ( O J3 ). If the angle

B is small, the spiral is weakly generated, and the time of motion

is short, where the minimum possible time t= 2(' r,

corresponds to the case of radial motion B = 0 (see problem 11.7).
If the angle is large, then the spiral turns sharply and the time
of motion is long. When B = w/2, we again get the initial circular
orbit for which it is not possible to determine the time of motion
based on Eq. (11.11). In this case we must use the formulas in
Chapter Six.

We should note that the explicit or implicit (in terms of r)
dependence of the motion characteristics on the spiral angle B is
determined by their dependence on the parameters of the sail pro-
ducing the thrust, since in this case we can assume that each B
corresponds to fixed sail parameters. For example, we assume that
some given "sail factor" of the craft corresponds to 0 = 880
(cos 8 = 0.03) (strict correspondence is possible only for the
case when the spiral angle B is equal to the angle y of incidence
of the rays at the plane surface). Based on Eq. (11.11) we can
calculate the time of motion of the craft from Earth orbit to Mars
orbit:

2[(2.28 1) '" - (.50 -40o)"'] 8
S 3 .270o.o6 o.03 = 0.98'10 sec = 1130 days = 3.1 years.

Here the radius-vector of the craft (heliocentric) will turn by
the angle
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=a I _n_3ctgp 2 r

2 3 .98oeoi327-o O, 3 =3.12 178 °
3-003 2(I.50-fO8 )12 J

that is, in the time of motion from.the Earth orbit to Mars orbit /136
the craft will make about half a revolution along the spiral
around the Sun.

Problem 11.9. Determine the distance r from Earth's center
to points situated along the same line as the centers of the Earth
and Moon at which the force of attraction by the Earth of a mass m
is equal to the force of attraction of this same mass by the Moon.
Take the Earth-Moon distance to be d = 3 84,400 km, and the mass

ratio M/M~,1:81.5. (Problem of sphere of attraction.)

Solution. The equality of forces of attraction of mass m by
the Earth and by the Moon

f M fmMI M, M_
ra (d -r) -(d-r) 2

enables us to write out the quadratic equation that has the
following roots:

(M -M, ) r 2 M rd + M d = O,

d M M_ dF'

-I

-- I

/

Fig. 32 Fig. 33
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Thus, there are at least two equi-attracted points situated along
the lines of centers of attraction (collinear points) for which
(Fig. 33) we have

dr = 0.90d,
c +VM /Ma

so that the point C is between Earth and Moon at a distance r =

= 346,000 km from the Earth's center and d - rc = 38,400 km from

the Moon's center, while point D lies "beyond the Moon" at the
distance rD = 430,500 km from Earthts center and rD - d = 46,100

km from Moon's center. Point D is 7700 km farther from the Moon's
center than is the point C.

A mass m placed at point C experiences equal attraction by
both Earth and Moon, where these forces are directed in different /137
directions so that the mass, devoid of velocity, stays at point C.
A mass placed at point D will also experience equal attraction,
but the forces in this case are directed in the same direction so
that the mass, devoid of velocity, will fall toward the Moon under
the influence of the resultant of these attractive forces. The
force of attraction at point D is smaller than at point C:

The conditions of pairwise equality of the attractive forces
of Earth and Moon enable us to write

BC d-r , BD r,-d M
Ac r i s ' AD r M~

from whence it follows that points C and D divide up the distance

between Earth's center and Moon's center AB in the ratio ,,/(/I

internally and externally. Using the techniques of elementary
geometry, we can prove that if a sphere is constructed on the
segment CD as a diameter, the sphere will be the geometrical locus
of points for each of which the force of Earth attraction is equal
to the force of Moon attraction. The value of this force differs
from the value at the neighboring force owing to the change in
distance (for the same mass m). We call this sphere the sphere
of attraction of the Moon relative to the Earth. Within this
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sphere the force of attraction of mass m by the Moon is always
greater than the force of attraction-by the Earth. The radius
of the sphere of attraction p and the distance of its center E
from the Moon's center BE = A can be calculated using the formulas

p= CD=(7-)= 42,300 km, A=r,+p-d-4740jkm,

from which it follows that the center of the sphere of attraction

lies "beyond the Moon" by a distance of 3100 km from its surface

(R4 = 1740 km).

The concept of the "sphere of attraction of a lesser mass
relative to a greater" applies to any point masses. To determine
the parameters of the sphere if we know only the masses and the
distances between the masses, we can use the following formulas
that are valid for the Earth-Moon case:

=d - (p-A), =d +(p +),

/138
d d

d-P a= +M 77 ' +PI- ,-k- ,-/M.

dM/M6 = dvM/7-,/ (11.12)

= -. /M =7470 kmi, = _ M/M

By writing out these formulas for the Sun-Earth case, we can
determine the parameters of the sphere of attraction of the Earth-

relative to the Sun: M+ 6'1027 Gs, M. = 21033 Gs, d = 150"106

km, p = 259,500 km, and A = 450 km. Thus, the center of the Earth's
sphere of attraction relative to the Sun lies within the globe. It
is interesting to note that the Moon is outside the Earth's sphere
of attraction relative to the Sun, as a consequence of which the
Sun attracts the Moon more strongly than does the Earth. Actually,
let us set up the ratio of the magnitude of the attractive forces
acting on the Moon:

By adopting the mean distance from Moon to Sun as 150"106 km, we get

2 -.10" 384 10 \2
i yo* 1.,50 o108 = 2. 12,
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so that the Sun attracts the Moon roughly twice as strongly as does
the Earth. The stable geocentric motion of the Moon is due to the
corresponding geocentric velocities and accelerations.

Using Eqs. (11.12) we can also show that any point K of a
sphere constructed on diameter CD exhibits the above-indicated
property of equality of attractive forces. To see this, it is
sufficient to prove the following equality (see Fig, 33):

- BC/Const-

KA A coCst > =Y- =.

By denoting aa =M,/M., we can rewrite Eqs, (11.12) as

da d d+A=d+ 2d- ci
-4-c ' P-' -a-' - --a

On the other hand, based on the theorem of cosines for the triangles
KBE and AKE, we have

(KB) = A+ pa- 2 p cos c=( l(a) ta -2 a3cos ) /139

(KA) =(d) + '- 2(d+.) pcos (( )' , +a - 2acos,).

from whence there follows (KB/KA)2 = a , that is, KB/KA = a, which
is what we set out to prove.

Problem 11.10. Determine at which velocity a missile must
be launched from the Earth's surface aimed at the Moon for it to
reach the point of equal attraction closest to the Earth and to
remain in equilibrium at it.

Solution. As indicated in problem 11.9, the collinehr point
of equal attractions C situated along the line of the centers of
the Earth and Moon (see Fig. 33) is the point of equal attractions
closest to the Earth. The distance from the Earth's center to this
point re = 346,000 km, and from the Moon's center -- d - r =

= 38,400 km. In this problem was also shown that if some mass (a
missile or a spacecraft) reaches point C with zero velocity rela-
tive to Earth and Moon, this mass will remain at this point in
equilibrium by virtue of the above presented equality of attrac-
tive forces.

When a missile moves from the Earth's surface to point C, a
change occurs in its kinetic energy equal to the sum of work done
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by the attractive forces of Earth and Moon:

hiCe - ii =A +Ar
2 2 F6

where

A, rMM, ( d R)

The equality of the missile at point C means that it arrives there
at zero velocity, so that the launch velocity is

Rc r i d-re d-R8

Thus, knowing that fM+ = 398,600 km/sec2 R+ = 6370 km, /140
o o

d = 384,400 km, re = 346,000 km, and d - r = 38,400 km, let us

find v0 = 11.04 km/sec.

Note that the formula g = fM /R is no longer valid for the
o o

motion of a point in the field of attraction of two centers.
Assuming the resultant force of attraction of Earth and Moon at
the surface of the Earth to be equal to the weight of a body, we
get

SMA M
-my = i - dR)2

whence

- (d-R6)

2
When M( = 0 , this formula is converted into the formula gR = fM

o
which is valid for one attractive center,
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Similarly, we determine the falling velocity of mass m onto
the Moon if this mass is at the collinear point of equivalent
attractions D without initial velocity, In this case

2 --- = A + A

A fm.- - 0o, A( fM(( -- d )>,

so that

= 2fM, + - .

When ,~ = 1740 km, rD = 430,500 km, and d = 384,400 km, we

get v = 2.38 km/sec. Obviously, this then must be the launch
velocity from the surface of the Moon required for the rocket to
reach the collinear point of equal attractions D, after which it
falls to the surface of the Moon.

Problem 11.11. A spacecraft moves along an elliptical trajec-
tory around an attractive center M with gravitational parameter

1M" The craft passes near some attractive mass m. Assuming that

the perturbing mass is in the orbital plane of the craft, determine
the instantaneous change in the constant of energy dh/dt and the
semi-major axis da/dt of the craft orbit.

Solution. The orbital energy of a craft moving in the field /141
of attraction of the central mass M is determined by the integral

of energy a We will call the variation in

h and a for constant r the instantaneous change in these quantities:

dK dv da 2a2v du
d- t=2v dt' dt jn dt

where dv/dt is the instantaneous velocity change.

In this problem (see Fig. 34) this velocity change is defined
thusly. Suppose the force IF I =M/p 2 is a force of attraction

of the perturbing mass m (m << M) acting on a unit-mass craft at
the distance p from it. Under the influence of this force
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/ tangential and normal craft
/ accelerations are induced

dt

Of these accelerations, only the
tangential acceleration w can

alter the orbital energy, so that
Fig. 34

dh 2jv da 2a 2 v m  O
t.= cosa, - cos0.

dt F& dt . P "

From the resulting formulas::it is clear that the orbital
energy h increases or decreases, depending on the direction of
craft motion, that is, on the change in the angle 0. The change
in energy dh/dt depends only on the gravitational parameter of
the perturbing mass m and the distance p at which the craft is

separated from it. The value of cos 0 must be assumed negative /142
if the perturbing force causes orbital rotation in a direction
opposite to the direction of the orbital motion of the craft.
In this case the amount of energy (E < 0) and the semi-major axis
are reduced. It is precisely this case that is shown in Fig. 34.

Problem 11.12. When an artificial Earth satellite is moving
in the atmosphere, scattering (dissipation) of the total energy
of the AES is observed, obeying the law dh/dt = - 24, where ( is
the positive scattering function. Determine the nature of the

evolution of the elliptical orbit of the AES (h=zc).

Write out the equation of the energy balance and establish the
nature of the change in the orbital kinetic and potential energies
of the AES.

Solution. Based on the law of scattering, the total energy
h acted on by atmospheric drag decreases. From the formula h =
= - pm/2a it becomes obvious that the decrease in the negative h
(elliptical orbit) is accompanied by a decrease in the total semi-
major axis of the orbit a, that is, the orbit sinks into the denser
atmospheric layers.

We can easily show that during this descent of the orbit,
the apogee sinks faster than the perigee. Actually, let us look
at one revolution of the orbit: apogee - perigee - apogee. At
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the perigee the atmospheric density for a given revolution is the
maximum, therefore the atmospheric drag appearing in the drag
formula will also be at a maximum. In addition, the drag is a
function of AES velocity, and its velocity at the perigee is at a
maximum so that it is obvious that the effect of atmospheric drag
will be at a maximum precisely at the perigee. As a result, the
AES partially loses velocity at the perigee, resulting in the
former apogee altitude no longer being attained. A similar effect
can be observed for any point on the orbit, but its intensity
decreases as the satellite moves from the perigee to the apogee
(the density decreases, since the altitude of the AES increases,
while the velocity diminishes according to the law of areas). At
the apogee the deceleration effect will be the smallest, while a
slight loss in velocity will not substantially influence the
position of the next perigee. Thus, the apogee sinks faster than
the perigee, resulting in the elliptical orbit being converted
into a circular orbit with simultaneous reduction in a and r:
e 0, and a r r r.

In spite of the loss of orbital velocity in each revolution,
overall as the orbit sinks from revolution to revolution the mean /143
orbital velocity will increase. Actually, let us determine the
limit of the mean AES velocity (see problem 5.19):

Jim2av4im (,V v.) LJim [jF(k - +

that is, the mean velocity tends to the value of the circular
velocity, which as we know increases as the orbit sinks. Thus,
the so-called "satellite paradox" can take place, namely, 1
that during motion in the atmosphere the satellite experiences
acceleration in the direction of its motion. The approximate
nature of the velocity change for motion through the atmosphere
is shown in Fig. 35, where n is the number of revolution.

The increase in the mean orbital velocity entails an increase
in the kinetic energy T = mv 2 /2. By writing out further the energy

balance equation h = T - U = T + V = mv 2 /2 - Pm/r and substituting
this equation:.into the expression of the law of energy scattering,
we get

t t d 2 r /14
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Hence it follows that if there
is a simultaneous increase in
T due to an increase in the
velocity v and a decrease in the

SI I total energy h resulting from the
scattering of energy, the poten-
tial energy of the AES V = - U

I I I must fall off faster than the
SI I I I *kinetic energy T increases.

i ! J 5
It should be noted that the

actual slowing down of AES in

Key: i. v the atmosphere can be viewed as
av the result of applying a con-

tinuous series of infinitely
small impulses, where the drag

is directed along the tangent to this trajectory (tangential
impulse) and is proportional to the instantaneous velocity. After
applying each impulse, we get a new orbit with new constant h.
The new ellipse is smaller than the former, and the tangent to it
at the point of impulse application even has one focus coinciding
with the focus of the initial ellipse.

The principles presented above can be illustrated by the
following formulas. Suppose that at the perigee the velocity

receives some increment AV,. so that ) =V- + aU,. The sign of

the increment is not known in advance. From the integral of
energy when r = const, we have

r + A = AAt,
2 2'

whence

(11.13)

This means that the increments Ar and Ar have the same signs, /145

since the reduction in the velocity at the perigee necessarily
entails a decrease in r . And this means the descent of the orbit.

Let us establish a relationship between the velocity incre-
ments at the perigee and at the apogee. Let us write out the
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integral of energy for the apogee and the increment Ah for the
variable r :

2 3. L _ _

so that

.. -# A)V., A (-4a')r,=

=- aafr (rl + 2t .) A r

Substituting in this expression in place of Arc, its value

from Eq. (11.13), we find

A - '- Af(r )+ 2  (11.14)

From this formula it follows that the increments Av and Av
a 7T

have. different signs. In addition, the orbit tends to a circular

orbit, that is, I and ijaI. Therefore the impulse

relation Av =-3A v. obtains.

Problem 11.13. Determine the local circular and local para-
bolic velocities of a point with mass m over the surface of the
Earth at the distance r0 from its center if the motion occurs in

the equatorial plane of the Earth. The Earth is taken as a com-
pressed ellipsoid of revolution (spheroid).

Solution. The potential of a compressed Earth taken as an
ellipsoid of revolution, to second-order terms relative to the /146
geometrical compression of the Earth, is of the form

U=~ + tJ 2- )+ (-Osn155
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where J3 =162410 6 , and D = 6'106 are dimensionless coefficients

containing the geometric compression a in the first and second
powers; 4 is the geometrical latitude of the points; and R+ is the
equatorial radius of the Earth. o

Let us write out the formula of the potential for = 0
(equatorial plane):

UD L [I +1J(a ( R 4j (11.15)

We know that the acceleration w of a point moving in a field
of arbitrary potential force F in a system of spherical coordinates
consists of three components:

~PU&FO - p. W'. Co W 

F au F = U F= dU
m, 8Tar Ar a7p cose a

Suppose the point executes uniform circular motion in the equatorial
plane of the Earth taken as an ellipsoid of revolution. The force
of gravity FO (p = 0) in this case, as is true of the force of
gravity of a spherical Earth, is a central force (see Fig. 36 a,
b, and c), that is, FO = FO = 0 and FO = FO. Then the radialX r
acceleration is simultaneously a normal acceleration, and the
"longitudinal" component of acceleration corresponds to the tan-
gential acceleration which is always zero for uniform circular
motion. Thus,

tU,-W, -r r =COnSt<, =. <m, WA - t.

whence we can obtain the circular velocity

v= - - -re Fo const>0.

The gravitational force F - F = corresponding to it is found

from Eq. (11.15): /147

5-= aU 2 41

(11.16)
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so that the circular velocity is defined by the formula

+ci= i+3( + D r =coist >U, (11.17)

a b

F Opuma

2
CHC3

C d I

Fig. 36
Key: 1. Orbit

2. AES

To calculate the local parabolic velocity of a point, let us
use the theorem of the change in the kinetic energy of a point as
it moves "at infinity":

2
S my

where A is the work done by the gravitational force F in
r0,

moving the point in the equatorial plane from a given surface of
the potential level "at infinity", equal to A O /148

In this case U. =0, -)0U. so that v UsingpaOsota pr oUsing

Eq. (11.15) (where the distance r = r 0 ), let us determine the
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parabolic velocity:

Vpar = (11.18)

A comparison of the formulas obtained for v . and v shows

that the familiar formula vp =/2Vc used by us in solving the

problems in this collection corresponds only to the first term of
a series in the expansion of the potential of the compressed Earth,
that is, it is valid only for the spherical model of the Earth. '.
Using Eqs. (11.17) and (11.18), let us write out the corrections
to the values vI = 7.90 km/sec and v = 11.19 km/sec for points

on the equator (r 0 = R):
O

J* (i+-+-D) = 7,90/ 1624- 0 "+ 3.6 7.90 1.001627,

vi 33 + o-D)=I11,9#+542-V106 +0-10.=ii,19I1000542.

From these corrections it follows that the influence of the non-
sphericity of the Earth for vll is smaller than for v I .  As a

point ascends above the Earth's surface this influence diminishes,
which follows from the velocity formulas.

In passing from the equatorial plane (q / 0), the force of
attraction of a compressed ellipsoid of revolution, owing to the
disruption of symmetry, ceases to be a central force (Fig. 36 d)
Here two components of the attractive [gravitational] force appear --
-- radial

F,= f&& II +(D(3Sina)) Si + SyL4

and "latitudinal"

Fv - -! STlq-lstosy + (140steiqcosq-60sigecosq- . /149- .-' [" aJ(RY)a s/u\/149

The "longitudinal" component F for the model of an ellipsoid

of revolution is always equal to zero since F does not depend on A.
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Corresponding to these force components is the variable radial

acceleration wr = - =M and the nonzero acceleration

,- ' = -I- -- , so that circular motion proves

to be impossible for an ellipsoid of revolution when 4 Z 0,

In this problem we have limited ourselves to examining the
model of an ellipsoid of revolution, or a spheroid, taking the
corresponding expansion to an accuracy of second-order terms. But
if in the expansion (11.15) we take series terms that enable us not
only to allow for the higher orders of compression for the model of
a spheroid but also terms characterizing the triaxiality of the
Earth (nonsphericity of the equator), the oblateness of the
northern hemisphere, and so on, it becomes obvious that since
in actuality the Earth's symmetry relative to the equatorial plane
does not exist, neither does the strictly circular motion of an
AES exist even in the equatorial plane. So for actual AES motions
we can speak only of near-circular orbits.

Problem 11.14. A point is moving under the effect of the

central attractive force F "B+ r), where i > 0. and v > 0 are

certain constants. Set up an equation of motion of the point using
Binet's formula.

Solution. The physical significance of the problem posed
can be established by using the formulas from problem 11.13 where
Eq. (11.16) was derived for the force of attraction in the equa-
torial plane. From Eq. (11.16) it follows that this force, cal-
culated to the first degree of the geometrical compression of the
Earth, is of the form

This law of action of the force coincides with the law given in
the conditions of the problem, if we take

j=u->0, i and 9= 3R >0.

Thus, the first summand can be interpreted as the force of attrac- /150
tion of a spherical Earth, and the second summand can be inter-
preted as the incremental force of attraction .of the equatorial
access of the Earth's mass.
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Using Binet's second formula (see -Chapter Four), let us write

F u = F - + ) u
- +U a U 2 +7-T Caaa C

cac

where u = 1/r is Binet's variable, and c=r i is the constant of

areas.. Hence

- (11.19)

(compare with Eqs. (11.4) from problem 11,6, and (4.11) from prob-
lem 4.10). This is a second-order nonlinear inhomogeneous equation

of the type y!3 +by+cy+d=0 (c=0), which is insolvable in elementary

functions. It can, for example, be reduced to an equation of the

type y'2 + lay tby1+cy+2dy+L=0 (a 0), that is solvable in

elliptical functions. However, from the physical point of view
this equation is the equation of the perturbed motion of a point
'in a central field of attraction. In celestial mechanics, solutions
of equations of perturbed motion are set up by using methods of
successive approximations or methods of the variation of arbitrary
constants. If these methods are applied to the solution of this
equation (11.19), one must take as the first approximation the
solution of the equation of unperturbed motion derived from (11.19)
when v = 0. This equation corresponds to the motion of a point
in the field of attraction of a spherical Earth and its solution
is an unperturbed Keplerian ellipse.

Problem 11.15. Determine the maximum possible period of
revolution of an artificial Earth satellite T. What is the maximum
duration of residence of this AES in the Earth's umbra?

Solution. We will assume the surface of the Earth's sphere
of action to be the boundary of the domain of existence of the AES.
Taking as the radius of the sphere p = 929,900 km (see Chapter Nine),
which is 2.41 times greater than the distance of Earth to Moon

rc =1384,400 km, let us express the period of revolution of this

AES in terms of the known period of revolution of the Moon around

the Earth T( = 27.3 days (see problem 10.7), using Kepler's third

law:

TT( T)3= (2,4)2= 3.72i7.3 = i0i.6 days.
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Obviously, when r > p, the body will be converted into an /151
artificial planet so that the period found can be assumed to be
approximately of the possible periods.

Let:-.us determine the duration of residence of an AES in the
Earth's umbra. The length of the conical shadow of the Earth

OC = (Fig. 37) can be found from the congruence of the triangles

O'K'C' and OKC. By setting O'C = K'C = a.+,, we can write

+ , Taking R. = 6.96'10 km, R+ = 6370 km, and
6 o

a= 149.6'10 km, we get - +,49q. 7 1 O+

from whence M 4,496-10 = ,38106 km.

08, = e

OWaum MCJ

Fig. 37
Key: 1. Sun

2. Earth
3. Orbit of AES

The half-aperture angle of the cone of the Earth's umbra can
be determined from AOKC:

stn F --- = 0. 0046, 0016

We can readily see that $f the length of the cone of the
Earth's umbra is x= 1.38'10 km, an object at a distance p =

930,000 km = 0.93'106 km from the Earth's center can fall within
this cone, for a specific orbital inclination. The time spent in
the umbra for an AES orbit situated in the plane of the ecliptic
will be at a maximum when the orbital plane will lie in the plane
of symmetry of the umbra cone (this orbital inclination is equal
to the inclination of the ecliptic to the equator i = 230.5).
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The time of residence of this AES in the umbra can be deter-
mined as follows. Let .us find the length of the segment AB
(chords of circular segment) from the congruence of triangles OBD
and OKC. It is

2R& "4 cos 1 /152

whence when cos Oi ,f we have

AB 2RP (W- P) = 2-6370 (1,38-0.93)I06 = 4.09-10' km.
t.38- .O 6

We determine the corresponding central angle:

SLtn ,- AB - 4,09j0 - 0V 0
2u = 2*9,"0 - 022 ,

P-=008', J =0"16' =0,0047.

The proportion of the above-found period of revolution of
the AES corresponding to its residence in the Earth's umbra is

4 0,_ - = 0.00075 ,

whence the time of residence in the umbra (maximum possible) is

'C-0 0.00075 T O0050501.i6 10.076 day 1 hour 50 min.
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